Supplementary Information

Unveiling the complex vibronic structure of canonical adenine cation

Hong Yan Zhao and Kai-Chung Lau

Department of Biology and Chemistry, City University of Hong Kong, Kowloon, Hong Kong.

Gustavo A. Garcia and Laurent Nahon

Synchrotron SOLEIL, L'orme des Merisiers, Saint-Aubin - BP 48 - 91192 Gif-sur-Yvette Cedex, France.

Stéphane Carniato

Sorbonne Université, CNRS, Laboratoire de Chimie Physique- Matière et Rayonnement,

UMR 7614, F-75005 Paris, France

Lionel Poisson

LIDYL, CEA, CNRS, Université Paris-Saclay, CEA Saclay 91191 Gif-sur-Yvette France.

Martin Schwell

Laboratoire Interuniversitaire des Systèmes Atmosphériques (LISA), UMR 7583 CNRS, Universités

Paris-Est Créteil et Paris Diderot, Institut Pierre et Simon Laplace, 61 Avenue du Général de Gaulle,

94010 Créteil, France

Muneerah Mogren Al-Mogren

Chemistry Department, Faculty of Science, King Saud University, PO Box 2455, Riyadh 11451,

Kingdom of Saudi Arabia.

Majdi Hochlaf * ^{a)}

Université Paris-Est, Laboratoire Modélisation et Simulation Multi Echelle, MSME UMR 8208 CNRS, 5 bd Descartes, 77454 Marne-la-Vallée, France.

Keywords: ab initio spectroscopy, DNA bases, adenine, VUV photoionization.

* To whom correspondence should be addressed.

a) MH: Tel. +33160957319. Fax: +33160957320. Email: <u>hochlaf@univ-mlv.fr.</u>

Species	9H-adenine	9H-adenine ⁺	3H-adenine	3H-adenine ⁺	7H-adenine	7H-adenine ⁺			
	Total energies								
PBE0/aug-cc-pVDZ	-466.87444	-466.57908	-466.86206	-466.56945	-466.86187	-466.55799			
ZPVE ^a	24738	24828	24865	24768	24771	24650			
CCSD(T)-F12b/cc-pVTZ-F12	-466.73389	-466.43108	-466.72056	-466.42223	-466.72200	-466.41086			
CCSD(T,fc)/cc-pwCVTZ	-466.57363	-466.27777	-466.55994	-466.26894	-466.56182	-466.25734			
CCSD(T,full)/cc-pwCVTZ	-467.07047	-466.77404	-467.05671	-466.76506	-467.05849	-466.75351			
CCSD(T)/cc-pVTZ	-466.54498	-466.24939	-466.53130	-466.24060	-466.53316	-466.22896			
CCSD(T)/cc-pVTZ-DK	-466.76288	-466.46745	-466.74922	-466.45867	-466.75111	-466.44704			
	Io	nization energ	gies(in eV)						
CCSD(T)-F12b	8.	240	8.	118	8.4	467			
CV	0.0	0.016		018	0.0	014			
SR	-0.	004	-0.	004	-0.004				
ZPVE	0.	011	-0.	012	-0.015				
IE(F12b+CV+SR+ZPVE)	8.	262	8.	120	8.462				

Table S1: Total energies (in Hartrees) and ionization energies (IE in eV) at the (R)CCSD(T)-F12(b)/ccpVTZ-F12 (+CV+SR+ZPVE) level. ZPVE corresponds to the zero point vibrational energy (in cm⁻¹).

^a Based on harmonic vibrational frequencies at PBE/aug-cc-pVDZ level.

No.	Symm.	Harm.	Assignment	No.	Symm.	Harm.	Assignment
1	a'	3668	v NH	21	a'	917	$\delta \left(\mathrm{N}_7 \mathrm{C}_8 \mathrm{N}_9 ight)$
2	a'	3562	v NH	22	a'	879	δ (N ₁ C ₂ N ₃), δ ring
3	a'	3530	v NH	23	a'	727	δ ring
4	a'	3246	v CH	24	a'	598	δ ring
5	a'	3186	v CH	25	a'	512	δ ring
6	a'	1669	β NH, ν (C ₆ N ₁₀)	26	a'	506	δ (C ₅ C ₆ N ₁), δ ring
7	a'	1637	$v(N_3C_4), v(C_6N_{10})$	27	a'	280	$\delta(C_5C_6N_{10})$
8	a'	1567	β NH, δ ring	28	a"	988	$\beta \operatorname{NH}_2$
9	a'	1502	β NH, ν (C ₆ N ₁₀)	29	a"	935	$\gamma C_8 H_{15}$
10	a'	1451	β CH, ν (C ₄ C ₅)	30	a"	827	au ring
11	a'	1435	$\beta N_9 H_{14}, \beta C_2 H_{13}, \nu(C_8 N_9), \nu(N_7 C_8)$	31	a"	718	γ ΝΗ
12	a'	1416	$\beta C_2 H_{13}$, $v(C_2 N_3)$, $v(N_7 C_5)$, βNH	32	a"	669	γ ΝΗ
13	a'	1413	$v(C_6N_1), v(N_1C_2), v(N_3C_4)$	33	a"	660	γ ΝΗ
14	a'	1383	β CH, ν (C ₄ C ₅), δ ring	34	a"	613	η ΝΗ
15	a'	1313	β CH, β NH ₂ , ν (N ₇ C ₈), δ ring	35	a"	565	γ CH, τ ring
16	a'	1207	β CH, ν (N ₇ C ₈), δ ring	36	a"	448	γ CH, τ ring
17	a'	1187	δ ring, $v(N_3C_2)$, β NH ₂	37	a"	276	τ ring, γ NH,, γ CH
18	a'	1115	β NH, β CH, ν (N ₉ C ₈),	38	a"	222	τ ring, γ NH, γ CH
19	a'	1096	β NH, δ ring, $v(N_3C_2)$, $v(N_9C_4)$	39	a"	143	$ au$ ring, γ NH
20	a'	997	$\gamma C_2 H_{10}$				

Table S2(a): B3LYP/aug-cc-pVDZ harmonic frequencies (in cm⁻¹) of ground state ($\widetilde{X}^2 A''$) of 9-adenine⁺. (In plane vibration: ν stretching, β bending, δ deformation. Out of plane vibration: γ wagging, η twisting, τ torsion.).

Table S2(b): Relative intensities with respect the calculated 0_0^0 transition intensity and energy position of the bands for the 9A(\tilde{X}^1A') \rightarrow 9A⁺(\tilde{X}^2A'') simulated transitions. The 0_0^0 transition energy is set to the adiabatic ionization energy of 9A (= 8. 262 eV). I(0_0^0) is set equal to 1.

Transitio	Assistant	v	Energ	Rel.I
n	Assignment		y (eV)	
39_0^2	$ au$ ring, γ NH	2	8.298	0.078
24_0^1	δ ring	1	8.337	0.184
23 ¹ ₀	δ ring	1	8.353	0.071
36_0^2	γ CH, τ ring	2	8.374	0.112
19^{1}_{0}	β NH, δ ring, $v(N_3C_2)$, $v(N_9C_4)$	1	8.400	0.088
34_0^2	η NH	2	8.415	0.540
33_0^2	γ ΝΗ	2	8.427	0.455
14_0^1	β CH, ν (C ₄ C ₅), δ ring	1	8.435	0.078
13^{1}_{0}	$v(C_6N_1), v(N_1C_2), v(N_3C_4)$	1	8.439	0.097
9 ¹ ₀	β NH, ν (C ₆ N ₁₀)	1	8.450	0.344
7_0^1	$v(N_3C_4), v(C_6N_{10})$	1	8.466	0.080
6_0^1	β NH, ν (C ₆ N ₁₀)	1	8.471	0.118
$33_0^2 38_0^2$	τ ring, γ NH, γ CH / γ NH	2/2	8.483	0.076
$24_0^1 34_0^2$	δ ring/ η NH	2/1	8.491	0.061
$24_0^1 33_0^2$	δ ring,/ γ NH	1/2	8.502	0.052
$34_0^2 36_0^2$	γ CH, τ ring/ η NH	2/2	8.529	0.067
$33_0^2 36_0^2$	γ CH, τ ring/ γ NH	2/2	8.539	0.065
34 ⁴ ₀	η NH	4	8.569	0.148
33 ⁴ ₀	γ ΝΗ	4	8.592	0.180
$9_0^1 3 4_0^2$	η NH/ β NH, $v(C_6N_{10})$	2/1	8.791	0.184
9 ¹ ₀ 33 ² ₀	γ NH/ β NH, ν (C ₆ N ₁₀)	2/1	8.803	0.155

Figure S1: Optimized structure of singlet 9H-adenine (X¹A') obtained at PBE0/aug-cc-pVDZ level. The numbering of the atoms used in the tables is also given.

Table S3: Main geometrical parameters (Å and degrees) of the neutral and cation of 9H-adenine and 9H-adenine⁺, obtained at PBE0/aug-cc-pVDZ level of theory. The main geometrical changes between neutral and ionic 9H-adenine are in bold.

Bonds and	9-adenine (X^1A')	9-adenine ⁺ (X^2A'')		
Angles				
N ₁ -C ₂	1.340	1.314		
C ₂ -N ₃	1.332	1.377		
N ₃ -C ₄	1.336	1.301		
C ₄ -C ₅	1.396	1.429		
C ₅ -C ₆	1.409	1.434		
C ₆ -N ₁	1.340	1.353		
C ₆ -N ₁₀	1.349	1.320		
C ₅ -N ₇	1.380	1.336		
N ₇ -C ₈	1.309	1.344		
C ₈ -N ₉	1.374	1.350		
N ₉ -C ₄	1.372	1.381		
N ₁₀ -H ₁₁	1.006	1.014		
N ₁₀ -H ₁₂	1.007	1.015		
C ₂ -H ₁₃	1.092	1.091		
C ₈ -H ₁₅	1.086	1.087		
N ₉ -H ₁₄	1.009	1.014		
N ₁ -C ₂ -N ₃	128.9	128.5		
C ₂ -N ₃ -C ₄	111.1	112.4		
N ₃ -C ₄ -C ₅	127.0	126.5		
C ₄ -C ₅ -C ₆	115.8	115.0		
C ₅ -C ₆ -N ₁	118.7	118.9		
C ₅ -C ₆ -N ₁₀	122.3	122.2		
C ₄ -C ₅ -N ₇	111.4	111.9		
C ₅ -N ₇ -C ₈	103.9	103.9		
N ₇ -C ₈ -N ₉	113.4	113.7		
C ₈ -N ₉ -C ₄	106.8	106.8		

Bonds and	OIL adapinat $(\mathbf{V}^2 \mathbf{A}'')$	9H-adeni	$ne^+ (1^2A')$	OIL adapting $+ (2^2 \wedge ")$
Angles	9H-adenine (X ² A)	Cs	C ₁	9H-adenine [*] (2 ² A)
N ₁ -C ₂	1.322	1.352	1.370	1.418
C ₂ -N ₃	1.362	1.292	1.284	1.264
N ₃ -C ₄	1.278	1.334	1.345	1.371
C ₄ -C ₅	1.444	1.400	1.391	1.384
C ₅ -C ₆	1.449	1.402	1.405	1.391
C ₆ -N ₁	1.339	1.346	1.365	1.409
C ₆ -N ₁₀	1.305	1.323	1.312	1.302
C ₅ -N ₇	1.339	1.381	1.379	1.386
N ₇ -C ₈	1.345	1.316	1.318	1.313
C ₈ -N ₉	1.367	1.385	1.384	1.394
N ₉ -C ₄	1.359	1.344	1.343	1.330
N ₁₀ -H ₁₁	0.999	0.997	0.998	1.000
N ₁₀ -H ₁₂	1.000	0.995	0.997	0.999
C ₂ -H ₁₃	1.077	1.075	1.075	1.076
C ₈ -H ₁₅	1.073	1.073	1.072	1.072
N ₉ -H ₁₄	0.998	0.997	0.998	0.991
N ₁ -C ₂ -N ₃	129.1	119.4	121.1	126.0
C ₂ -N ₃ -C ₄	113.4	114.7	114.9	114.5
N ₃ -C ₄ -C ₅	125.0	126.9	126.8	126.8
C ₄ -C ₅ -C ₆	116.2	118.5	117.1	116.9
C ₅ -C ₆ -N ₁	117.5	109.2	111.9	117.5
C ₅ -C ₆ -N ₁₀	121.6	127.9	127.2	127.3
C ₄ -C ₅ -N ₇	111.9	111.3	111.3	110.9
C ₅ -N ₇ -C ₈	103.5	103.4	103.4	103.6
N ₇ -C ₈ -N ₉	113.6	113.0	112.8	112.4
C8-N0-C4	107 1	107.1	107.0	106 9

Table S4: Main geometrical parameters (Å and degrees) of the ground state ($\tilde{X}^2 A''$) and first two excited states (1²A', 2²A'') of 9-adenine⁺ and 9-adenine, obtained at SA-CASSCF/aug-cc-pVDZ level of theory using C₁ symmetry.

	-		9-adenin	e (X ¹ A')			9-adenine (X ¹ A')		
No.	Symm.	Harm.	Anharm.	Assignment	No.	Symm.	Harm.	Anharm.	Assignment
1	a'	3782	3485	v NH	21	a"	987	955	у СН
2	a'	3684	3518	v NH	22	a'	947	932	δ ring
3	a'	3638	3390	v NH	23	a'	903	891	δ ring
4	a'	3271	3143	v CH	24	a"	866	846	ү СН
5	a'	3196	3069	v CH	25	a"	823	802	$ au$ ring, γ CH
6	a'	1693	1647	β NH, v (C ₅ C ₆)	26	a'	735	727	δ ring
7	a'	1674	1645	β NH, v (C ₄ N ₃)	27	a"	695	673	τ ring
8	a'	1620	1573	β NH, δ ring	28	a"	675	657	γ CH, γ NH
9	a'	1546	1516	β CH, ν (N ₇ C ₈)	29	a'	619	617	δ ring, β NH
10	a'	1524	1489	β NH, β CH	30	a"	587	564	γ ΝΗ, γ CΗ
11	a'	1466	1429	$N(N_9C_4), \beta NH$	31	a"	552	405	γ NH
12	a'	1438	1398	β NH, β CH	32	a"	543	494	γ ΝΗ, γ CΗ
13	a'	1400	1363	β NH, β CH	33	a'	530	531	δ ring
14	a'	1384	1353	β CH, β NH	34	a'	519	514	β NH, β CH
15	a'	1361	1326	β CH, δ ring	35	a"	302	296	γ CH, τ ring
16	a'	1278	1256	β CH, β NH	36	a'	273	277	β NH, δ ring
17	a'	1256	1259	β CH, β NH	37	a"	222	245	$ au$ ring, γ NH
18	a'	1159	1140	β NH, β CH	38	a"	169	201	γ NH, τ ring
19	a'	1096	1074	β NH, β CH	39	a"	49	-*	γ NH
20	a'	1015	1089	β NH, δ ring					

Table S5: Harmonic and anharmonic frequencies (in cm⁻¹) of 9-adenine electronic ground state obtained at PBE0/aug-cc-pVDZ level of theory. Anharmonic frequencies are arranged according to the harmonic frequencies. (In plane vibration: v stretching, β bending, δ deformation. Out of plane vibration: γ wagging, η twisting, τ torsion.)

*Strongly anharmonic. VPT2 is not applicable.

Table S6: PBE0/aug-cc-pVDZ harmonic and anharmonic frequencies (in cm⁻¹) of ground state (X²A") of 9-adenine⁺. Anharmonic frequencies are arranged according to the harmonic frequencies. Anharmonic frequencies obtained at SA-CASSCF/aug-cc-pVDZ level (closed 30, occ 40) are also listed. (In plane vibration: ν stretching, β bending, δ deformation. Out of plane vibration: γ wagging, η twisting, τ torsion.).

			9H	-adenine ⁺ (X ²	A'')			9H-adenine ⁺ (X ² A")			
		PI	BE0	SA-				Р	BEO	SA-	
				CASSCF					520	CASSCF	
N	Sym	Har	Anhar	Anharm. ^a	Assignment	N	Sym	Har	Anhar	Anharm. ^a	Assignme
0.	m.	m.	m.		rissignment	0.	m.	m.	m.		nt
1	a'	3683	3503	3535	v NH	21	a'	923	911	884	δ ring, β CH
2	a'	3629	3465	3492	v NH	22	a'	885	870	843	δ ring, β CH
3	a'	3545	3386	3412	v NH	23	a'	739	729	695	δ ring, β CH
4	a'	3277	3151	3107	v CH	24	a'	607	600	563	δ ring, β CH
5	a'	3231	3106	3073	v CH	25	a'	520	515	509	δ ring, β CH
6	a'	1681	1640	1685	$v(N_3C_4),$ $v(C_6N_{10})$	26	a'	504	498	477	δ ring
7	a'	1673	1633	1653	β NH, $\nu(C_6N_{10})$	27	a'	274	273	275	$\delta(C_5C_6N_{10})$
8	a'	1604	1567	1546	β NH, δ ring	28	a"	1002	975	975	у СН
9	a'	1520	1489	1504	β NH, $\nu(C_6N_{10})$	29	a"	937	909	890	у СН
10	a'	1488	1446	1438	β CH, ν (C ₄ C ₅)	30	a"	822	807	797	au ring
11	a'	1460	1423	1435	$v(N_1C_2),$ $v(N_7C_8)$	31	a"	722	703	686	γNH
12	a'	1456	1423	1402	β NH, δ ring	32	a"	671	644	604	γ NH
13	a'	1449	1417	1364	β CH, δ ring	33	a"	651	638	585	γ NH
14	a'	1403	1373	1342	β CH, δ ring	34	a"	616	595	572	η ΝΗ
15	a'	1333	1311	1261	β CH, δ ring	35	a"	567	552	514	γ CH, τ ring
16	a'	1229	1205	1183	β CH, δ ring	36	a"	439	428	443	γ CH, τ ring
17	a'	1213	1183	1137	δ ring, β NH	37	a"	274	269	259	τ ring, γ CH
18	a'	1135	1115	1084	β NH, β CH	38	a"	220	214	215	τ ring, γ

											СН
19	a'	1125	1096	1013	β NH, δ ring	39	a"	141	139	129	τ ring, γ NH
20	a'	1008	989	998	β NH, δ ring						

^aCASSCF harmonic frequencies scaled by 0.91.

Figure S2: Optimized structure of singlet 3-adenine (X^1A') obtained at PBE0/aug-cc-pVDZ level. The numbering of the atoms used in the tables is also given.

Bonds and	3H-adenine (X ¹ A')	3H-adenine ⁺ (X ² A")
Angles		
N ₁ -C ₂	1.308	1.300
C ₂ -N ₃	1.349	1.372
N ₃ -C ₄	1.368	1.343
C ₄ -C ₅	1.411	1.450
C ₅ -C ₆	1.397	1.434
C ₆ -N ₁	1.364	1.361
C ₆ -N ₁₀	1.343	1.314
C ₅ -N ₇	1.365	1.312
N ₇ -C ₈	1.335	1.401
C ₈ -N ₉	1.369	1.339
N ₉ -C ₄	1.328	1.333
N ₁₀ -H ₁₁	1.008	1.014
N ₁₀ -H ₁₂	1.007	1.015
C ₂ -H ₁₃	1.090	1.091
C ₈ -H ₁₅	1.088	1.088
N ₃ -H ₁₄	1.012	1.018
N ₁ -C ₂ -N ₃	125.0	125.8
C ₂ -N ₃ -C ₄	118.5	118.5
N ₃ -C ₄ -C ₅	119.0	119.0
C ₄ -C ₅ -C ₆	118.7	118.0
C ₅ -C ₆ -N ₁	119.9	119.0
C ₅ -C ₆ -N ₁₀	122.8	122.5
C ₄ -C ₅ -N ₇	108.1	108.8
C ₅ -N ₇ -C ₈	101.9	101.9
N ₇ -C ₈ -N ₉	118.0	117.3
C ₈ -N ₉ -C ₄	100.8	101.5

Table S7: Main geometrical parameters (Å and degrees) of the neutral and cation of 3H-adenine and 3H-adenine⁺, obtained at PBE0/aug-cc-pVDZ level of theory.

Table S8: Harmonic and anharmonic frequencies (in cm⁻¹) of 3H-adenine and of 3H-adenine⁺ in their electronic ground states obtained at PBE0/aug-cc-pVDZ level of theory. Anharmonic frequencies are arranged according to the harmonic frequencies. (In plane vibration: v stretching, β bending, δ deformation. Out of plane vibration: γ wagging, η twisting, τ torsion.

		3H-adenine (X ¹ A')					3H-adenine (X ¹ A')			
N	Sym	Har	Anhar	Assignment	N	Sym	Harm.	Anharm.	Assignment	
0.	m.	m.	m.		0.	m.				
1	a'	3775	3580	v NH	21	a'	a'	956	δ ring, β NH	
2	a'	3632	3458	v NH	22	a"	a"	932	ү СН	
3	a'	3628	3449	v NH	23	a"	a"	927	ү СН	
4	a'	3247	3117	v CH	24	a'	a'	911	δ ring	
5	a'	3222	3087	v CH	25	a"	a"	800	au ring	
6	a'	1716	1674	$v(C_5C_6), v$	26	a'	a'	731	δ ring	
				(C_6N_{10})						
7	a'	1646	1606	β NH, ν (C ₄ N ₃)	27	a"	a"	710	γ ΝΗ	
8	a'	1631	1591	β NH, δ ring	28	a"	a"	672	γ CH, γ NH	
9	a'	1568	1533	β NH, ν (C ₆ N ₁₀)	29	a"	a"	662	γ ΝΗ	
10	a'	1517	1482	β NH, v (C ₄ C ₅)	30	a'	a'	612	$ au$ ring, β NH	
11	a'	1499	1463	β NH, β CH	31	a"	a"	578	η NH	
12	a'	1472	1442	β CH, δ ring	32	a"	a"	553	η NH, γ CH	
13	a'	1394	1363	β CH, δ ring	33	a'	a'	527	au ring	
14	a'	1384	1358	β CH, δ ring	34	a'	a'	510	β NH, β CH	
15	a'	1328	1300	β CH, δ ring	35	a"	a"	303	au ring	
16	a'	1271	1249	β CH, δ ring	36	a'	a'	274	β NH, β CH	
17	a'	1210	1184	β CH, δ ring	37	a"	a"	243	γ ΝΗ	
18	a'	1193	1172	β NH, β CH	38	a"	a"	195	γ NH, τ ring	
19	a'	1148	1128	β NH, β CH	39	a"	a"	156	τ ring, γ CN	
20	a'	1002	1009	β NH, β CH						
		3H-adenine ⁺ (X ² A'')					3	H-adenine ⁺	- (X ² A'')	
N	Sym	Har	Anhar	Assignment	N	Sym	Harm.	Anharm.	Assignment	
0.	m.	m.	m.		0.	m.				
1	a'	3686	3508	v NH	21	a"	977	955	у СН	
2	a'	3570	3394	v NH	22	a"	949	919	у СН	

3	a'	3549	3396	v NH	23	a'	917	902	δ ring
4	a'	3269	3141	v CH	24	a'	862	850	δ ring
5	a'	3230	3108	v CH	25	a"	806	793	au ring
6	a'	1698	1659	β NH, ν (C ₆ N ₁₀)	26	a"	758	730	γ ΝΗ
7	a'	1685	1637	β NH, β CH	27	a'	731	722	δ ring, β NH
8	a'	1650	1610	β NH, δ ring	28	a"	709	689	γ ΝΗ
9	a'	1538	1511	β NH, δ ring	29	a"	661	643	γ ΝΗ
10	a'	1513	1463	β NH, β CH	30	a"	630	611	γ ΝΗ
11	a'	1483	1450	δ ring	31	a'	596	588	δ ring, β NH
12	a'	1458	1423	β CH, δ ring	32	a"	518	504	у СН
13	a'	1417	1378	β CH, β NH	33	a'	513	507	δ ring, β NH
14	a'	1379	1353	β CH, β NH	34	a'	509	505	β NH, δ ring
15	a'	1299	1264	β CH, β NH	35	a"	499	489	γ CH, γ NH
16	a'	1248	1213	β CH, β NH	36	a'	278	277	$ au$ ring, γ NH
17	a'	1178	1152	β CH, β NH	37	a"	271	267	$ au$ ring, γ NH
18	a'	1127	1105	β CH, β NH	38	a"	212	207	$ au$ ring, γ CH
19	a'	1032	994	$N(N_7C_8), \beta CH$	39	a"	139	137	γ ΝΗ, γ CN
20	a'	994	969	β NH					

Figure S3: Optimized structure of singlet 7-adenine (X¹A) obtained at PBE0/aug-cc-pVDZ level. The numbering of the atoms used in the tables is also given.

Bonds and Angles	7-adenine (X ¹ A')	7-adenine ⁺ (X ² A")
N ₁ -C ₂	1.345	1.315
C ₂ -N ₃	1.324	1.372
N ₃ -C ₄	1.341	1.306
C ₄ -C ₅	1.405	1.440
C ₅ -C ₆	1.400	1.431
C ₆ -N ₁	1.332	1.350
C ₆ -N ₁₀	1.375	1.327
C ₅ -N ₇	1.379	1.341
N ₇ -C ₈	1.368	1.408
C ₈ -N ₉	1.308	1.291
N ₉ -C ₄	1.378	1.384
N ₁₀ -H ₁₁	1.009	1.011
N ₁₀ -H ₁₂	1.012	1.016
C ₂ -H ₁₃	1.092	1.091
C ₈ -H ₁₅	1.086	1.087
N ₇ -H ₁₄	1.008	1.013
N ₁ -C ₂ -N ₃	128.7	128.3
C ₂ -N ₃ -C ₄	113.1	114.3
N ₃ -C ₄ -C ₅	123.2	123.3
C ₄ -C ₅ -C ₆	118.6	117.1
C ₅ -C ₆ -N ₁	118.9	118.3
C ₅ -C ₆ -N ₁₀	123.8	125.0
C_4 - C_5 - N_7	105.2	105.2
C ₅ -N ₇ -C ₈	106.0	106.6
N ₇ -C ₈ -N ₉	114.0	114.6
C ₈ -N ₉ -C ₄	104.5	104.9

Table S9: Main geometrical parameters (Å and degrees) of the neutral and cation of 7-adenine and 7-adenine⁺, obtained at PBE0/aug-cc-pVDZ level of theory.

Table S10: Harmonic and anharmonic frequencies (in cm⁻¹) of 7H-adenine and of 7H-adenine⁺ in their electronic ground states obtained at PBE0/aug-cc-pVDZ level of theory. Anharmonic frequencies are arranged according to the harmonic frequencies. (In plane vibration: v stretching, β bending, δ deformation. Out of plane vibration: γ wagging, η twisting, τ torsion.)

		7H-adenine (X ¹ A')				7H-adenine (X ¹ A')			
No.	Symm.	Harm.	Anharm.	Assignment	No.	Symm.	Harm.	Anharm.	Assignment
1	a	3715	3551	v NH	21	a	987	966	у СН
2	a	3692	3524	v NH	22	a	950	944	δ ring, β NH
3	a	3591	3442	v NH	23	a	898	887	δ ring
4	a	3265	3141	v CH	24	a	891	868	у СН
5	a	3196	3067	v CH	25	a	827	809	au ring
6	а	1704	1671	$v(C_5C_6), \delta$ ring	26	a	735	725	δ ring
7	a	1650	1611	β NH, δ ring	27	a	711	692	au ring
8	а	1614	1580	β NH, δ ring	28	a	643	611	γ CH, γ NH
9	а	1554	1522	β CH, ν (C ₈ N ₉)	29	a	616	608	δ ring, β NH
10	а	1527	1488	β CH, β NH	30	a	587	554	у СН
11	а	1447	1409	β NH, ν (N ₇ C ₈)	31	a	549	459	γ ΝΗ
12	a	1427	1394	$N(C_4C_5), \beta CH$	32	a	534	478	γ NH
13	a	1408	1376	β CH, δ ring	33	a	522	515	γ NH, δ ring
14	a	1369	1338	β CH, δ ring	34	a	437	412	γ NH
15	a	1355	1327	β CH, δ ring	35	a	347	309	γ ΝΗ
16	a	1297	1276	β CH, δ ring	36	a	303	297	γ NH
17	a	1244	1218	β CH, β NH	37	a	287	284	τ ring
18	a	1149	1124	β NH, δ ring	38	a	209	204	$ au$ ring, γ NH
19	a	1105	1084	β NH, β CH	39	a	158	153	$ au$ ring, γ NH
20	a	1041	1030	β NH, β CH					
		7H-adenine ⁺ (X ² A'')					7H-adenine ⁺ (X ² A'')		
No.	Symm.	Harm.	Anharm.	Assignment	No.	Symm.	Harm.	Anharm.	Assignment
1	a'	3703	3529	v NH	21	a'	998	974	β NH, δ ring
2	a'	3630	3463	v NH	22	a"	927	904	у СН
3	a'	3551	3397	v NH	23	a'	913	902	δ ring
4	a'	3272	3152	v CH	24	a'	883	868	δ ring
5	a'	3230	3100	v CH	25	a"	806	791	τring

6	a'	1688	1640	β NH, δ ring	26	a'	741	717	δ ring
7	a'	1667	1625	β NH, δ ring	27	a"	722	705	γ NH, τ ring
8	a'	1623	1586	β NH, ν (C ₄ N ₃)	28	a"	646	628	γ ΝΗ, γ CΗ
9	a'	1556	1512	β NH, ν (C ₈ N ₉)	29	a"	614	591	γ ΝΗ, γ CΗ
10	a'	1499	1459	β CH, β NH	30	a'	596	589	β NH, δ ring
11	a'	1471	1429	β NH, β CH	31	a"	578	559	γ ΝΗ, γ CΗ
12	a'	1423	1392	β CH, δ ring	32	a"	534	514	γ ΝΗ
13	a'	1394	1367	β NH, δ ring	33	a'	534	526	β NH, δ ring
14	a'	1365	1332	β CH, β NH	34	a'	491	486	δ ring, β NH
15	a'	1352	1319	β CH, δ ring	35	a"	385	367	у СН
16	a'	1266	1245	β CH, β NH	36	a'	300	297	β NH, β CH
17	a'	1210	1187	β NH, δ ring	37	a"	265	262	δ ring, γ NH
18	a'	1104	1080	β CH, δ ring	38	a"	214	210	δ ring, γ CH
19	a'	1023	991	β NH, β CH	39	a"	123	127	δ ring, γ NH
20	a"	1002	975	у СН					

Table S11: Total energies (in Hartrees) and adiabatic ionization energy (in eV) of the 9H-adenine⁺($1^2A'$) at the (R)CCSD(T)-F12(b)/cc-pVTZ-F12 (+CV+SR+ZPVE) level. ZPVE corresponds to the zero point vibrational energy (in cm⁻¹).

	9H-adenine	9H-adenine ⁺					
	$(\widetilde{X}^{2}A'')$	$(1^2 A')$					
Total energies							
PBE0/aug-cc-pVDZ	-466.87444	-466.55207					
ZPVE	24738	24766					
CCSD(T)-F12b/cc-pVTZ-f12	-466.73389	-466.40063					
CCSD(T,fc)/cc-pwCVTZ	-466.57363	-466.24706					
CCSD(T,full)/cc-pwCVTZ	-467.07047	-466.74373					
CCSD(T)/cc-pVTZ	-466.54498	-466.21870					
CCSD(T)/cc-pVTZ-DK	-466.76288	-466.43664					
Adiabatic ionization energy							
CCSD(T)-F12b	9.069						
CV	0.004						
SR	-0.001						
ZPVE	0.003						
IE(F12b+CV+SR+ZPVE)	9.075						