Supplementary Material for

Bound electronic states of the smallest fullerene \mathbf{C}_{20}^- anion

Yifan Yang, Shachar Klaiman, Evgeniy V. Gromov and Lorenz S. Cederbaum Theoretische Chemie, Physikalisch-Chemisches Institut Universität Heidelberg Im Neuenheimer Feld 229, 69120 Heidelberg, Germany

Contents

Page

Table S1		•	• •	•		•	•		•		•		•		•	•	 •				•	• •	•		S2
Table S2		•	• •	•		•	•				•		•		•	•				•		•	•		S2
Figure S1	l.			•		•	•				•		•		•							•	•		S3

Method/Basis Set	Symmetry	Total Energy	Relative Energy	Type
MP2/cc-pVDZ	D _{3d}	-759.340389	0.00	Minimum
MP2/cc-pVDZ	D_{2h}	-759.339025	0.86	Saddle
MP2/aug-cc-pVDZ	D_{3d}	-759.449050	0.00	Minimum
MP2/aug-cc-pVDZ	D_{2h}	-759.447680	0.86	Saddle
B3LYP/cc-pVDZ	D_{3d}	-761.501033	0.99	Minimum
B3LYP/cc-pVDZ	D_{2h}	-761.502525	0.00	Minimum
B3LYP/cc-pVDZ	C_{2h}	-761.500943	0.95	Minimum
B3LYP/cc-pVTZ	D_{3d}	-761.670692	0.00	Minimum
B3LYP/cc-pVTZ	D_{2h}	-761.670566	0.08	Saddle
B3LYP/cc-pVTZ	C_{2h}	-761.670525	0.11	Minimum

Table S1: Total (a.u.) and relative (kcal/mol) energies, and the type of stationary points (minimum or saddle point) for the different ground-state structures of C_{20} obtained from a full geometry optimization using the different methods and basis sets.

Table S2: Cartesian coordinates (Å) of the D_{3d} structure of C_{20} used in the EA-EOM-CCSD calculations. The structure was obtained from a full geometry optimization at the CCSD/cc-pVDZ level.

C	-1.1802534214	-0.6814196306	1.4538596246
С	1.1802534214	0.6814196306	-1.4538596246
С	0.7624932991	1.8317172442	-0.6591796852
С	-0.7624932991	-1.8317172442	0.6591796852
С	0.7624932991	-1.8317172442	0.6591796852
С	-0.7624932991	1.8317172442	-0.6591796852
С	0.000000000	0.000000000	-1.9512456115
С	0.000000000	0.000000000	1.9512456115
С	1.1802534214	-0.6814196306	1.4538596246
С	-1.1802534214	0.6814196306	-1.4538596246
С	-1.9675603144	-0.2555200549	-0.6591796826
С	1.9675603144	0.2555200549	0.6591796826
С	1.2050670155	1.5761971866	0.6591796804
С	-1.2050670155	-1.5761971866	-0.6591796804
С	0.000000000	-1.3628392597	-1.4538596217
С	0.000000000	1.3628392597	1.4538596217
С	-1.2050670155	1.5761971866	0.6591796804
С	1.2050670155	-1.5761971866	-0.6591796804
С	1.9675603144	-0.2555200549	-0.6591796826
C	-1.9675603144	0.2555200549	0.6591796826

Figure S1: Angular distribution of the excess electron density for the two components of the 1 ${}^{2}E_{u}$ [(a) and (b)] and 2 ${}^{2}E_{u}$ [(c) and (d)] states of C_{20}^{-} . The range of both the azimuthal (θ) and polar (φ) angles is from 0 to π . The corresponding distributation for $\pi \leq \theta \leq 2\pi$ is identical since the density is symmetric with respect to θ .