SUPPLEMENTARY INFORMATION

Partitioning of interaction-induced nonlinear optical properties of molecular complexes. I. Hydrogen-bonded systems

Robert Zaleśny,*,^a Miroslav Medved',^b Robert W. Góra,^a Heribert Reis,^c Josep M. Luis*,^d

^a Department of Physical and Quantum Chemistry, Faculty of Chemistry, Wroclaw University of Science and

Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland

^b Department of Chemistry, Faculty of Natural Sciences, Matej Bel University, Tajovského 40, SK-97400 Banská Bystrica, Slovak Republic.

^c Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation (NHRF),

Vassileos Constantinou Ave 48th, 116 35 Athens, Greece.

^d Institute of Computational Chemistry and Catalysis and Department of Chemistry, University of Girona, Campus de

Montilivi, 17071 Girona, Catalonia, Spain

*E-mail: robert.zalesny@pwr.edu.pl, josepm.luis@udg.edu

HCl					
α^{nr}	β^{el}	β^{nr}	$\gamma^{ m el}$	$\gamma^{\rm nr} \times 10^3$	
10.92	-44.46	-760.49	7204	63.6	MP2
9.29	-37.71	-602.55	6601	43.9	CCSD
9.94	-39.54	-665.62	7559	49.8	CCSD(T)
НССН					
α^{nr}	β^{el}	β^{nr}	$\gamma^{ m el}$	$\gamma^{\rm nr}\times 10^3$	
3.61	-30.20	-184.48	8738	10.1	MP2
3.50	-24.78	-170.64	7577	9.2	CCSD
3.62	-23.61	-188.59	8519	9.9	CCSD(T)
HCCF					
$\alpha^{ m nr}$	β^{el}	$\beta^{ m nr}$	$\gamma^{ m el}$	$\gamma^{\rm nr} \times 10^3$	
6.58	91.77	-237.23	7631	11.6	MP 2
6.38	84.17	-218.17	6762	10.0	CCSD
6.58	93.84	-242.95	7691	11.5	CCSD(T)
HNC					
$\alpha^{\rm nr}$	β^{el}	β^{nr}	$\gamma^{ m el}$	$\gamma^{\rm nr} \times 10^3$	
8.38	-77.71	-345.17	8369	25.3	MP 2
7.80	-75.50	-274.15	7914	19.3	CCSD
8.12	-74.39	-300.75	8974	22.2	CCSD(T)
HCN					
$\alpha^{\rm nr}$	β^{el}	β^{nr}	$\gamma^{ m el}$	$\gamma^{\rm nr} \times 10^3$	
4.71	-63.51	-186.19	7840	11.8	MP 2
4.55	-61.09	-157.64	7764	9.9	CCSD
4.71	-57.52	-175.21	8856	11.3	CCSD(T)
	HCl α^{nr} 10.92 9.29 9.94 HCCH α^{nr} 3.61 3.50 3.62 HCCF α^{nr} 6.58 6.38 6.38 6.58 HNC α^{nr} 8.38 7.80 8.12 HCN α^{nr} 4.71 4.55 4.71	HCl α^{nr} β^{el} 10.92 -44.46 9.29 -37.71 9.94 -39.54 HCCH α^{nr} β^{el} 3.61 -30.20 3.50 -24.78 3.62 -23.61 HCCF α^{nr} β^{el} 6.58 91.77 6.38 84.17 6.58 93.84 HNC α^{nr} β^{el} 8.38 -77.71 7.80 -75.50 8.12 -74.39 HCN α^{nr} β^{el} 4.71 -63.51 4.55 -61.09 4.71 -57.52	HCl $\begin{array}{cccccccccccccccccccccccccccccccccccc$	HCl $\begin{array}{cccccccccccccccccccccccccccccccccccc$	HCl $\begin{array}{cccccccccccccccccccccccccccccccccccc$

Table S1: Electronic and nuclear-relaxation (hyper)polarizabilities of studied molecular complexes computed using the aug-cc-pVTZ basis set. All values are given in au.

Table S1: continued

HNCH	NC					
$\alpha^{\rm el}$	$\alpha^{\rm nr}$	β^{el}	$\beta^{ m nr}$	$\gamma^{ m el}$	$\gamma^{\rm nr} \times 10^3$	
54.04	8.54	-98.28	-356.58	9900	31.7	MP 2
52.93	7.79	-103.07	-237.97	9847	21.5	CCSD
54.21	8.09	-100.14	-276.19	11406	26.4	CCSD(T)
FCNH	CN					
$\alpha^{\rm el}$	α^{nr}	β^{el}	$\beta^{ m nr}$	$\gamma^{ m el}$	$\gamma^{\rm nr} \times 10^3$	
52.68	6.74	-104.28	-188.11	6126	12.6	MP 2
51.71	6.44	-88.33	-180.51	5629	11.6	CCSD
53.24	6.73	-89.85	-190.24	6416	13.3	CCSD(T)
FCNH	F					
$\alpha^{\rm el}$	$\alpha^{\rm nr}$	β^{el}	$\beta^{ m nr}$	$\gamma^{ m el}$	$\gamma^{\rm nr}\times 10^3$	
34.92	7.40	-62.49	-105.77	2663	8.5	MP 2
34.05	6.96	-54.44	-90.38	2531	7.1	CCSD
35.12	7.22	-55.26	-92.45	2878	8.5	CCSD(T)
N2HF						
$\alpha^{\rm el}$	α^{nr}	β^{el}	$\beta^{ m nr}$	$\gamma^{ m el}$	$\gamma^{\rm nr}\times 10^3$	
23.06	3.46	-3.35	-64.23	1847	2.7	MP 2
22.90	3.31	-2.90	-55.64	1760	1.9	CCSD
23.48	3.40	-3.41	-60.91	1932	2.3	CCSD(T)
OCHF						
$\alpha^{\rm el}$	α^{nr}	β^{el}	$\beta^{ m nr}$	$\gamma^{ m el}$	$\gamma^{\rm nr}\times 10^3$	
24.87	3.76	-33.63	-67.60	2164	3.6	MP 2
24.15	3.59	-35.72	-45.93	2172	2.7	CCSD
24.73	3.66	-35.22	-53.97	2413	2.9	CCSD(T)
HCNH	F					
$\alpha^{\rm el}$	α^{nr}	β^{el}	$\beta^{ m nr}$	$\gamma^{ m el}$	$\gamma^{\rm nr} \times 10^3$	
31.47	5.50	-1.91	-152.32	2852	7.9	MP 2
31.04	5.14	0.43	-132.88	2711	6.8	CCSD
31.80	5.33	3.65	-141.65	3040	7.5	CCSD(T)

Table S2: Comparison of diagonal electronic first hyperpolarizability for HCN···HCCH calculated using different geometries.

Property	//	Geometry	$\beta^{\mathrm{el}}_{zzz}$ [au]	Absolute relative error wrt. CCSD(T)//CCSD(T) [%]
CCSD(T)	//	CCSD(T)	-23.61	0
CCSD(T)	//	MP2	-23.13	2
MP2	//	MP2	-30.20	28

Table S3: Electron correlation effect on excess first hyperpolarizability of HCN···HCCH.

Property	//	Geometry	$\Delta eta_{zzz}^{\mathrm{el}}$ [au]	Absolute relative error wrt. CCSD(T)//MP2 [%]
CCSD(T)	//	MP2	-28.23	0
CCSD	//	MP2	-27.65	2
MP2	//	MP2	-29.55	5

System	$\Delta lpha_{ m el}^{(10)}$	$\Delta lpha_{ m ex}^{ m HL}$	$\Delta lpha_{ m del}^{ m HF}$	$\Delta \alpha^{ m HF}$	$\Delta \alpha^{(12)}_{\rm el,r}$	$\Delta lpha_{ m disp}^{(20)}$	$\Delta \alpha_{\rm ex}^{(2)}$	$\Delta \alpha^{\text{MP2}}$
HNCHNC	15.51	-25.04	17.75	8.22	0.08	3.53	-0.99	10.85
HCNHNC	14.43	-21.42	15.90	8.91	-0.29	3.00	-1.47	10.15
FCNHF	8.50	-11.51	9.68	6.66	-0.12	1.44	-1.07	6.93
HCNHCl	26.55	-46.39	28.57	8.73	-0.06	8.25	-3.60	13.32
HNCHCN	9.82	-13.70	7.34	3.47	-0.01	2.07	-0.86	4.67
FCNHCN	10.22	-13.01	7.28	4.50	-0.23	2.18	-1.31	5.12
OCHF	5.85	-8.68	6.18	3.35	0.13	1.04	-0.38	4.13
HCNHCCF	8.60	-9.75	4.95	3.80	-0.13	1.83	-1.24	4.26
HCNHCCH	7.70	-8.91	4.45	3.23	-0.11	1.68	-1.21	3.59
N ₂ HF	5.02	-5.74	4.24	3.52	-0.10	0.57	-0.35	3.64
Relative contribu	itions							
HNCHNC	143%	-231%	164%	76%	1%	33%	-9%	100%
HCNHNC	142%	-211%	157%	88%	-3%	30%	-14%	100%
FCNHF	123%	-166%	140%	96%	-2%	21%	-15%	100%
HCNHCl	199%	-348%	214%	66%	0%	62%	-27%	100%
HNCHCN	210%	-293%	157%	74%	0%	44%	-18%	100%
FCNHCN	200%	-254%	142%	88%	-5%	42%	-26%	100%
OCHF	142%	-210%	150%	81%	3%	25%	-9%	100%
HCNHCCF	202%	-229%	116%	89%	-3%	43%	-29%	100%
HCNHCCH	215%	-249%	124%	90%	-3%	47%	-34%	100%
N ₂ HF	138%	-158%	116%	97%	-3%	16%	-10%	100%
Average	171%	-235%	148%	84%	-1%	36%	-19%	100%
Average deviation	34%	41%	20%	8%	2%	11%	8%	0%

Table S4: Absolute and relative VP-EDS contributions to excess nuclear relaxation polarizability calculated at the MP2/*aug*-cc-pVTZ level of theory.

System	$\Deltaoldsymbol{eta}_{ ext{el}}^{ ext{(10)}}$	$\Delta eta_{ m ex}^{ m HL}$	$\Deltaeta_{ ext{del}}^{ ext{HF}}$	$\Delta m{eta}^{ ext{HF}}$	$\Delta eta_{ m el,r}^{(12)}$	$\Deltaeta_{ m disp}^{(20)}$	$\Delta eta_{ m ex}^{(2)}$	$\Delta \beta^{\text{MP2}}$
HNCHNC	-943.3	1777.6	-1463.0	-628.2	-15.7	-279.3	129.2	-794.0
HCNHNC	-779.7	1383.9	-1180.8	-567.9	-3.2	-219.9	154.6	-635.8
FCNHF	-248.0	457.4	-461.5	-254.7	1.2	-77.4	60.8	-268.0
HCNHCl	-2073.7	4156.5	-2959.9	-877.2	28.7	-683.7	314.5	-1217.6
HNCHCN	-458.0	746.0	-497.2	-209.2	-8.5	-102.0	56.6	-263.1
FCNHCN	-448.5	679.9	-471.6	-243.7	-4.2	-93.5	66.2	-272.7
OCHF	-119.9	251.9	-245.9	-113.9	-10.4	-37.6	27.7	-134.2
HCNHCCF	-444.6	585.7	-352.1	-211.0	-0.2	-92.4	66.0	-236.3
N ₂ HF	-83.1	166.6	-152.4	-68.8	-9.1	-31.4	24.8	-84.5
Relative contrib	utions							
HNCHNC	119%	-224%	184%	79%	2%	35%	-16%	100%
HCNHNC	123%	-218%	186%	89%	1%	35%	-24%	100%
FCNHF	93%	-171%	172%	95%	0%	29%	-23%	100%
HCNHCl	170%	-341%	243%	72%	-2%	56%	-26%	100%
HNCHCN	174%	-284%	189%	80%	3%	39%	-22%	100%
FCNHCN	164%	-249%	173%	89%	2%	34%	-24%	100%
OCHF	89%	-188%	183%	85%	8%	28%	-21%	100%
HCNHCCF	188%	-248%	149%	89%	0%	39%	-28%	100%
N ₂ HF	98%	-197%	180%	81%	11%	37%	-29%	100%
Average	135%	-235%	184%	84%	3%	37%	-24%	100%
Average deviation	31%	36%	13%	5%	3%	5%	3%	0%

Table S5: Absolute and relative VP-EDS contributions to excess nuclear relaxation first hyperpolarizability calculated at the MP2/*aug*-cc-pVTZ level of theory.

Optimized geometries of molecular complexes (cartesian coordinates are given in Å).

HNC.	• •	HNC,	CCSE	(T))/a	aug-	CC	-pVI	Z
С	0.	0000	0 C	.00	000	00	2	.797	06
N	0.	0000	0 C	.00	000	00	1	.622	808
Н	0.	0000	0 C	.00	000	0 0	0	.609	79
С	0.	0000	0 C	.00	000	0 0	-1	.475	62
N	0.	0000	0 C	.00	000	0 0	-2	.646	519
Н	0.	0000	0 0	.00	000	00	-3	.645	19
UCM		UNC	CCCT	\ (T \	\ /-			nV7	יסי
C C	•••	0000) / c \ \ (aug-	2	-pv1 73/	7/
N	0.	0000					2 1	- 734 560	000
	0.	0000					T T	- JUC	100
п	0.	0000				0	1	.045 417	71 176
IN C	0.	0000					-T 2	• 4 1 /	02
U U	0.	0000					-Z 2	. J / 4	92 956
н	Ο.	0000	0 0	.00	JUC	0	-3	.643	020
FCN.		HF,	CCSD (Т),	/au	ig-c	c-j	pVTZ	,
F	0.	0000	0 0	.00	000	00	2	.347	25
С	0.	0000	0 0	.00	000	00	1	.082	89
N	0.	0000	0 0	.00	000	00	-0	.076	525
Н	0.	0000	0 0	.00	000	00	-1	.941	18
F	0.	0000	0 0	.00	000	00	-2	.872	06
HCN		HCl	CCST) (T)) / =	- nia		-nVT	'7.
н	0	0000	0 0		,,, ,,,,	n n	_ 3	788	277
C	0.	0000)))	0	-2	720	156
N	0.	0000)) ((0	-1	562	53
н	0.	0000)) ((0	0	5002	.00
	0.	0000)))		1	797	71
CT.	•••	0000	0 0	••••	500		Ŧ	• 1 9 1	/ 1
HNC.		HCN,	CCSE	(T)) / a	aug-	CC	-pVI	Z
Ν	0.	0000	0 C	.00	000	00	2	.950	43
С	0.	0000	0 C	.00	000	00	1	.789	80
Н	0.	0000	0 C	.00	000	00	0	.715	97
С	0.	0000	0 0	.00	000	00	-1	.633	815
N	0.	0000	0 C	.00	000	00	-2	.805	56
Н	0.	0000	0 0	.00	000	00	-3	.804	35

FCI	NHCN, (CCSD(T)/aug	I-cc-bAIZ
F	0.00000	0.00000	3.03565
С	0.00000	0.00000	1.76942
Ν	0.00000	0.00000	0.60800
Н	0.00000	0.00000	-1.60266
С	0.00000	0.00000	-2.67483
Ν	0.00000	0.00000	-3.83534
00	HE CC	ст. (т.) (т.) d	
00.			_1 96982
C	0.00000	0.00000	-0.83740
	0.00000	0.00000	1 24205
г	0.00000	0.00000	1.24395 2.17092
Г	0.00000	0.00000	2.17005
FCC	CHNCH,	CCSD(T)/au	Ig-cc-pVTZ
F	0.00000	0.00000	3.15020
С	0.00000	0.00000	1.86365
С	0.00000	0.00000	0.65972
Н	0.00000	0.00000	-0.40643
Ν	0.00000	0.00000	-2.72362
С	0.00000	0.00000	-3.88261
Н	0.00000	0.00000	-4.95070
		CCCD(T)/2	
псс	0 00000	CCSD(1)/at	19-CC-PVIZ
п	0.00000	0.00000	4.01901 2.05541
C	0.00000	0.00000	2.95541
U	0.00000	0.00000	1.74413
н	0.00000	0.00000	0.67636
N	0.00000	0.00000	-1.66503
C	0.00000	0.00000	-2.82410
Н	0.00000	0.00000	-3.89214
N2.	HF, CCS	SD(T)/aug-c	c-pVTZ
Ν	0.00000	0.00000	-1.98892
Ν	0.00000	0.00000	-0.88599
Н	0.00000	0.00000	1.18084
F	0.00000	0.00000	2.10471

HNC...HNC, MP2/aug-cc-pVTZ С 0.00000 0.00000 2.77993 Ν 0.00000 0.00000 1.60356 0.00000 Η 0.00000 0.58887 С 0.00000 0.00000 -1.45710 0.00000 -2.62862 0.00000 Ν 0.00000 0.00000 -3.62759 Η HCN...HNC, MP2/aug-cc-pVTZ 0.00000 0.00000 2.72042 С Ν 0.00000 0.00000 1.54408 0.00000 Н 0.00000 0.53221 0.00000 0.00000 -1.39929 Ν 0.00000 0.00000 -2.56330 С Η 0.00000 0.00000 -3.62943 FCN...HF, MP2/aug-cc-pVTZ F 0.00000 0.00000 2.34529 С 0.00000 0.00000 1.08369 Ν 0.00000 0.00000 -0.08315 Н 0.00000 0.00000 -1.93274 F 0.00000 0.00000 -2.86597 HCN...HCl, MP2/aug-cc-pVTZ Η 0.00000 0.00000 -3.75854 0.00000 -2.69287 С 0.00000 Ν 0.00000 0.00000 -1.52789 0.00000 0.00000 0.48672 Η Cl 0.00000 0.00000 1.77412 HNC...HCN, MP2/aug-cc-pVTZ 0.00000 0.00000 2.94546 Ν С 0.00000 0.00000 1.77786 Η 0.00000 0.00000 0.70576 С 0.00000 0.00000 -1.62416 0.00000 0.00000 -2.79790 Ν

Н

0.00000

0.00000 -3.79650

FCN...HCN, MP2/aug-cc-pVTZ F 0.00000 0.00000 3.03169 С 0.00000 0.00000 1.76822 Ν 0.00000 0.00000 0.59879 Н 0.00000 0.00000 -1.59287 С 0.00000 0.00000 -2.66310 0.00000 0.00000 -3.83047 N OC...HF, MP2/aug-cc-pVTZ 0.00000 0.00000 -1.96277 0 С 0.00000 0.00000 -0.82700 Н 0.00000 0.00000 1.22995 F 0.00000 0.00000 2.15908 FCCH...NCH, MP2/aug-cc-pVTZ 0.00000 0.00000 3.14315 F 0.00000 0.00000 1.85936 С С 0.00000 0.00000 0.65301 Н 0.00000 0.00000 -0.41115 Ν 0.00000 0.00000 -2.71029 С 0.00000 0.00000 -3.87633 0.00000 0.00000 -4.94181 Η HCCH...NCH, MP2/aug-cc-pVTZ Η 0.00000 0.00000 4.00947 0.00000 0.00000 2.94737 С С 0.00000 0.00000 1.73400 0.00000 0.00000 0.66807 Η 0.00000 0.00000 -1.65297 Ν С 0.00000 0.00000 -2.81909 0.00000 0.00000 -3.88453 Η N2...HF, MP2/aug-cc-pVTZ N 0 00000 0 00000 1 00160

Ν	0.00000	0.00000	-1.99169
Ν	0.00000	0.00000	-0.87848
Н	0.00000	0.00000	1.17613
F	0.00000	0.00000	2.10146