Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2018

Supplementary Information

Enhanced Electronic and Optical Properties of Three TMD Heterobilayers

Shafiq Ur Rehman and Z.J. Ding*

Key Laboratory of Strongly-Coupled Quantum Matter Physics, Chinese Academy of Sciences;

Hefei National Laboratory for Physical Sciences at Microscale and Department of Physics,

University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of

China

*Corresponding author: zjding@ustc.edu.cn

S1: The side view of the optimized structures with AB-stacking: (a) ZrS_2/HfS_2 ; (b) $ZrSe_2/HfSe_2$ and (c) $SnS_2/SnSe_2$ heterobilayers.

Table. S1: Geometric parameters (lattice constant *a*, spacing *d*, bond length and binding energy E_b for the predicted heterobilayers (L= Hf, Zr and Sn) with AB stacking.

Heterobilayers	ZrS ₂ /HfS ₂	ZrSe ₂ /HfSe ₂	SnS ₂ /SnSe ₂
<i>a</i> (Å)	3.63	3.63	3.63
<i>d</i> (Å)	5.49	5.49	5.49

L-S (Å)	2.55	-	2.57
L-Se (Å)	-	2.65	2.68
E_b (eV/atom)	-0.021	-0.011	-0.030

S2: Electronic charge density difference for (a) ZrS_2 monolayer and (b) HfS_2 monolayer at the isosurface of $5.3 \times 10^{-4} \ e/\text{\AA}$. Where red color indicates charge accumulation (electrons) and cyan color charge depletion (holes).

S3: Electronic charge density difference for (a) $ZrSe_2$ monolayer and (b) HfSe₂ monolayer at the isosurface of $5.3 \times 10^{-4} \ e/\text{\AA}$. Where red color indicates charge accumulation (electrons) and cyan color charge depletion (holes).

S4: Electronic charge density difference for (a) SnS_2 monolayer and (b) $SnSe_2$ monolayer at the isosurface of $5.3 \times 10^{-4} \ e/\text{\AA}$. Where red color indicates charge accumulation (electrons) and cyan color charge depletion (holes).

S5: Schematic diagram of the Type-II band alignment between two isolated monolayers: (a) ZrS_2 and HfS_2 ; (b) $ZrSe_2$ and $HfSe_2$; (c) SnS_2 and $SnSe_2$.