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Figure S1. AFM morphology (top) and height (bottom) characterizations of the native 

KLVFFAK nanosheet.
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Figure S2. Congo red (CR) assay of the KLVXFAK nanosheet and the native 

KLVFFAK nanosheet. XF: KLVXFAK nanosheet; FF: KLVFFAK nanosheet. The 

two nanosheet spectra have been offset vertically for better display and their 

absorbance values are thus in arbitrary unit (a.u.). The baseline tilt in the two 

nanosheet spectra is due to nanosheet scattering. 

Table S1. Curve-fitting analysis parameters in Figure 3

Peak Frequency

(cm-1)

Amplitude

(a.u.)

FWHM*

(cm-1)
Line-shape

0.17 11.0 Voigt

0.79 7.00 Voigt

2237

2231

2227 0.35 5.32 Voigt

*FWHM: full width at half maximum. 
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Figure S3. Comparison of the top spectrum in Figure 4 and the FTIR spectrum of the 

monomeric KLVXFAK peptide in water in the CN probe region.
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Figure S4. AFM morphology characterization of the KLVXFAK incubation solution 

at the very beginning of the incubation (t=0h).
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Figure S5. A) Temperature-dependent change of the second derivative spectra of the 

CN stretch of p-tolunitrile in water. 
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Figure S5. B) Temperature-dependent change of the derivative spectra of the CN 

stretch of p-tolunitrile in isopropanol. Top: fourth derivative spectra; Bottom: second 

derivative spectra. 

Note: Fourth derivative technique is needed in order to more accurately extract the 

CN frequency in the second derivative spectrum. The fourth derivative spectrum was 

obtained by performing second derivative treatment twice on the absorption spectrum.
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Figure S5. C) Temperature-dependent change of the second derivative spectra of the 

CN stretch of p-tolunitrile in formamide.
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Figure S5. D) Temperature-dependent change of the second derivative spectra of the 

CN stretch of p-tolunitrile in cyclohexane.
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Figure S5. E) Temperature-dependent change of the second derivative spectra of the 

CN stretch of p-tolunitrile in DMSO.
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Figure S5. F) Temperature-dependent change of the second derivative spectra of the 

CN stretch of the KLVXFAK monomer in water (i.e., the 2237 cm-1 peak).
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Figure S5. G) Temperature-dependent change of the second derivative spectra of the 

KLVXFAK nanosheet (i.e., the 2231 cm-1 peak).
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Figure S5. H) Temperature-dependent change of the second derivative spectra of the 

off-pathway KLVXFAK amorphous aggregate (i.e., the 2227 cm-1 peak).
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Figure S6. TG/MS curves of the KLVXFAK nanosheet.
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Figure S7. Three possible antiparallel -sheet configurations by KLVXFAK strands. 

Each arrow represents an individual KLVXFAK -strand (from N terminal to C 

terminal) and six strands are shown as representatives for each -sheet. Octagon with 

letter: amino acid residue; shaded octagon: residue with its side chain pointing away 

from the viewer; open octagon: residue with its side chain pointing towards the viewer; 

red color K: dangling K. 

Note: A and B configurations contain -stacking structure. Namely, in A, the 

aromatic side chains of X are aligned in register; in B, the aromatic side chains of X 

and F are aligned in register. C configuration contains no -stacking structure. 

Namely, in C, the aromatic side chains of X and the aliphatic side chains of V are 

aligned in register.
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Figure S8. Comparison of the Raman spectra of the KLVXFAK monomer and the 

KLVXFAK nanosheet. The two spectra have been scaled and then offset vertically for 

better display. a.u.: arbitrary unit.
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Figure S9. Comparison of the UV-Vis spectra of the KLVXFAK monomer and the 

KLVXFAK nanosheet. The nanosheet spectrum has been baseline corrected; the two 

spectra have been offset vertically for better display and their absorbance values are 

thus in arbitrary unit (a.u.).
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Figure S10. The hierarchical structural model for the KLVFFAK amyloid nanosheet 

proposed by Dai et al.1 Each blue stripe represents an individual KLVFFAK -strand 

and each green sheet represents an individual KLVFFAK -sheet. These -sheets 

stand perpendicular to the X-Y plane. 
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Figure S11. An alternative hierarchical structural model for the KLVXFAK amyloid 

nanosheet. A: Overview of the model. Each blue stripe represents an individual 

KLVXFAK -strand and each green sheet represents an individual KLVXFAK 

antiparallel -sheet. These -sheets stand perpendicular to the X-Y plane. B: View 

towards the X-Z plane where the viewer can see the details of the KLVXFAK 

antiparallel -sheet. Each arrow represents an individual KLVXFAK -strand (from 

N terminal to C terminal) and six strands are shown as representatives. Octagon with 

letter: amino acid residue; shaded octagon: residue with its side chain pointing away 

from the viewer; open octagon: residue with its side chain pointing towards the viewer; 

red-color K: dangling K. C: View towards the Y-Z plane where the viewer can see the 

details of the steric-zipper-like structure. Each unit represents the view of the edge of 

the KLVXFAK -sheet and six units are shown as representatives. The viewer can see 

all of the seven residues (K16, L17, V18, X19, F20, A21, and K22) from the front -
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strand and one dangling K22 from the second -strand. Solid red-color K: dangling K 

from the front strand; dotted red-color K: dangling K from the second -strand. 

Yellow color K, L, V, X, F, A are from the front -strand; and underneath these 

displayed residues are those non-displayed residues from the second -strand, which 

are A (under K), F (under L), X (under V), V (under X), L (under F), K (under A).

Note: In this model, there is no possibility for the CN probe of the X residue to form a 

H-bond with its neighboring residues, thus conflicting with our experimental 

observation that the CN probe is H-bonded with K.  
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Figure S12.  An alternative hierarchical structural model for the KLVXFAK 

amyloid nanosheet. (A) Overview of the model. Each blue stripe represents an 

individual KLVXFAK -strand and each green sheet represents an individual 

KLVXFAK antiparallel -sheet. These -sheets stand perpendicular to the X-Y plane. 

(B) View towards the X-Z plane. Each arrow represents an individual KLVXFAK -

strand (from N terminal to C terminal) and six strands are shown as representatives; 

Octagon with letter: amino acid residue; shaded octagon: residue with its side chain 

pointing away from the viewer; open octagon: residue with its side chain pointing 

towards the viewer; red-color K: dangling K. (C) View towards the Y-Z plane where 

the viewer can see the details of the steric-zipper-like structure. Each unit represents 

the view of the edge of the KLVXFAK -sheet and six units are shown as 

representatives. The viewer can see all of the seven residues (K16, L17, V18, X19, 
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F20, A21, and K22) from the front -strand and one dangling K22 from the second -

strand. Solid red-color K: dangling K from the front strand; dotted-red color K: 

dangling K from the second -strand. Yellow color K, L, V, X, F, A are from the front 

-strand; and underneath these displayed residues are those non-displayed residues 

from the second -strand, which are A (under K), F (under L), X (under V), V (under 

X), L (under F), K (under A). Solid red circle indicates the location of the H-bond 

between X and K; and dotted red circle indicates the location of the H-bond between 

X and K where X is underneath V. The light blue arrow indicates the location of water 

solvent exposure site.

Note: The difference of this model with the model in Figure 9 is that it allows the H-

bonding formation between dangling K and CN. Yet, there are two reasons to exclude 

this model. First, with this model, the height of KLVXFAK nanosheet would be 

higher than that of the KLVFFAK nanosheet in Figure S10 by a three-residue-length 

which corresponds to about 1 nm. This conflicts with our AFM observation that the 

KLVXFAK and KLVFFAK nanosheets have similar heights. Second, since X is H-

bonded by the dangling K, there are chances for X to be partially solvent exposed as 

the space underneath the dangling K (as indicated by the light blue arrows) can 

accommodate solvent water molecule. This would let us observe a CN frequency shift 

in the dehydration study. Yet, in our dehydration study (refer to Figure 7), after we 

dried the KLVXFAK nanosheet, we did not observe such frequency shift.
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Figure S13. An alternative hierarchical structural model for the KLVXFAK amyloid 

nanosheet. A: Overview of the model. Each blue stripe represents an individual 

KLVXFAK -strand and each green sheet represents an individual KLVXFAK 

antiparallel -sheet. These -sheets stand tilted relative to the X-Y plane. B: View 

towards the X-Z plane where the viewer can see the details of the KLVXFAK 

antiparallel -sheet. Each arrow represents an individual KLVXFAK -strand (from 

N terminal to C terminal) and six strands are shown as representatives. Octagon with 

letter: amino acid residue; shaded octagon: residue with its side chain pointing away 

from the viewer; open octagon: residue with its side chain pointing towards the viewer; 

red-color K: dangling K. C: View towards the Y-Z plane where the viewer can see the 

details of the steric-zipper-like structure. Each unit represents the view of the edge of 

the KLVXFAK -sheet and six units are shown as representatives. The viewer can see 

all of the seven residues (K16, L17, V18, X19, F20, A21, and K22) from the front -

strand and one dangling K22 from the second -strand. Solid red-color K: dangling K 
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from the front strand; dotted red-color K: dangling K from the second -strand. 

Yellow color K, L, V, X, F, A are from the front -strand; and underneath these 

displayed residues are those non-displayed residues from the second -strand, which 

are A (under K), F (under L), X (under V), V (under X), L (under F), K (under A). 

Solid red circle indicates the location of the H-bond between X and K; and dotted red 

circle indicates the location of the H-bond between X and K where X is underneath V. 

The light blue arrow indicates the location of water solvent exposure site.

Note: The difference of this model with the model in Figure 9 is that it allows the H-

bonding formation between dangling K and CN. Since X is H-bonded by the dangling 

K, there are chances for X to be partially solvent exposed as the space underneath the 

dangling K (as indicated by the light blue arrows) can accommodate solvent water 

molecule. This would let us observe a CN frequency shift in the dehydration study. 

Yet, in our dehydration study (refer to Figure 7), after we dried the KLVXFAK 

nanosheet, we did not observe such frequency shift.
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Figure S14. An alternative hierarchical structural model for the KLVXFAK amyloid 

nanosheet. A: Overview of the model. Each blue stripe represents an individual 

KLVXFAK -strand and each green sheet represents an individual KLVXFAK 

antiparallel -sheet. These -sheets stand tilted relative to X-Y plane. B: View 

towards the X-Z plane where the viewer can see the details of the KLVXFAK 

antiparallel -sheet. Each arrow represents an individual KLVXFAK -strand (from 

N terminal to C terminal) and six strands are shown as representatives. Octagon with 

letter: amino acid residue; shaded octagon: residue with its side chain pointing away 

from the viewer; open octagon: residue with its side chain pointing towards the viewer; 

red-color K: dangling K. C: View towards the Y-Z plane where the viewer can see the 

details of the steric-zipper-like structure. Each unit represents the edge view of the 

KLVXFAK -sheet and six units are shown as representatives. Unlike in the 

structural model shown in Figure 9 where the six units are identical, here each unit is 
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rotated by 180 relative to its neighboring unit within the -sheet plane. This 

configuration makes the steric-zipper class to be class 8. The viewer can see all of the 

seven residues (K16, L17, V18, X19, F20, A21, and K22) from the front -strand and 

one dangling K22 from the second -strand. Solid red-color K: dangling K from the 

front strand; dotted red-color K: dangling K from the second -strand. Yellow color K, 

L, V, X, F, A are from the front -strand; and underneath these displayed residues are 

those non-displayed residues from the second -strand, which are A (under K), F 

(under L), X (under V), V (under X), L (under F), K (under A). Solid red circle 

indicates the location of the H-bond between X and K; and dotted red circle indicates 

the location of the H-bond between X and K where X is underneath V. The light blue 

arrow indicates the location of water solvent exposure site.

Note: This model contains class 8 type steric zipper. According to Eisenberg’s 

definition,2 for the two -sheets in a class 8 steric zipper, the up-and-down orientation 

of the two sheets are opposite. This model conflicts with the observation in the 

dehydration study. As indicated by the light blue arrows, X (either displayed or 

underneath V) in these locations can be solvent exposed. This would let us observe a 

CN frequency shift in the dehydration study. Yet, in our dehydration study (refer to 

Figure 7), after we dried the KLVXFAK nanosheet, we did not observe such 

frequency shift.
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Figure S15.  An alternative hierarchical structural model for KLVXFAK amyloid 

nanosheet. A: Overview of the model. Each blue stripe represents an individual 

KLVXFAK -strand and each green sheet represents an individual KLVXFAK 

antiparallel -sheet. Each pair of -sheets constitutes an amyloid fibril. There are a 

total of four fibrils shown as representatives here. Unlike the model proposed in 

Figure 9 where the KLVXFAK -strands “stand tilted” relative to the X-Y plane, in 

this model the KLVXFAK -strands lie flat on top of the X-Y plane. (B) Top view of 

the model (towards the X-Y plane). Each arrow represents an individual KLVXFAK 

-strand (from N terminal to C terminal) and 24 strands in four -sheets are shown as 

representatives. Octagon with letter: amino acid residue; shaded octagon: residue with 

its side chain pointing away from the viewer; open octagon: residue with its side chain 

pointing towards the viewer; red-color K: dangling K.

Note: This nanosheet structure is formed by lateral association of individual 

KLVXFAK amyloid fibrils through the interaction between their N terminals and C 
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terminals. This type of amyloid assembly has been proposed by Mezzenga and 

coworkers recently to explain the structure of some giant amyloid ribbons.3, 4 As the 

thickness of a single -sheet is about 1 nm,5 the thickness of the nanosheet in Figure 

S15A would be about 2 nm. This is approximately consistent with our AFM height 

observation. Yet, this model conflicts with the observation in the dehydration study. 

As we can see from the top view of the nanosheet in Figure S15B, with our proposed 

antiparallel -sheet configuration, there are always some X residues (i.e., open 

octagons) pointing to the solvent with its CN probe exposed to water. Dehydration 

process would make these solvent-exposed CN probes change their status from being 

hydrated to being dehydrated. Correspondingly, the CN frequency of X residue should 

experience some shift. Yet, in our dehydration study (refer to Figure 7), after we dried 

the KLVXFAK nanosheet, we did not observe such frequency shift.
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