Supporting Information

Non-phase-separated 2D B-C-N alloys via molecule-like carbon doping in 2D BN: Atomic structures and optoelectronic properties

Xiang-Yang Ren^a, Sha Xia^a, Xian-Bin Li^{a,b*}, Nian-Ke Chen^a, Xue-Peng Wang^a, Dan Wang^a,

Zhan-Guo Chen^a, Shengbai Zhang^{a,b}, and Hong-Bo Sun^{a,c}

^aState Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China

^bDepartment of Physics, Applied Physics, and Astronomy, Rensselaer Polytechnic Institute, Troy,

New York 12180, USA

^cState Key Lab of Precision Measurement Technology and Instruments, Department of Precision

Instrument, Tsinghua University, Beijing, 100084, China.

E-mail address: lixianbin@jlu.edu.cn (X.-B. Li).

^{*}Corresponding author: Prof. Xian-Bin Li, State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun, 130012, China.

Fig. S1. Formation energy of carbon defect motifs in B-rich condition. Color coding of atom: pink for B, blue for N, and grey for C. The notification "m-n" is illustrated in the main text and is related to the defect motif shown in Fig. 1(a).

Fig. S2. Formation energy of carbon defect motifs in N-rich condition.

Fig. S3. Formation energies for the representative six-carbon defects. Their corresponding local pictures are shown in the insets. The notifications "m-n" are the same as Fig.1 in the main text.

Fig. S4. Band structures and partial DOS (PDOS) of the typical B-C-N alloy models. (a), (c) and (e) are the band structures with carbon concentration of 1.56%, 6.25%, 14.06%, respectively. (b), (d), (f) are the PDOS of (a), (c), (e) respectively.