The Dioxygen Adducts of Iron and Manganese Porphyrins: Electronic Structure and Binding Energy

Quan Manh Phung and Kristine Pierloot*

Department of Chemistry, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium

E-mail: kristin.pierloot@kuleuven.be

Electronic Supplementary Information

List of Figures

S1	Electron configurations and NOONs of investigated states of $\rm FeP-O_2.~The$	
	relative energies without $3s3p$ correlation (in kcal mol ⁻¹) were calculated with	
	DMRG-CASPT2/BS1	S4
S2	Electron configurations and NOONs of investigated states of $C_s(a)$ MnP $-O_2$.	
	The relative energies without $3s3p$ correlation (in kcal mol ⁻¹) were calculated	
	with DMRG-CASPT2/BS1	S5
S3	Electron configurations and NOONs of investigated states of $C_s(b)$ MnP $-O_2$.	
	The relative energies without $3s3p$ correlation (in kcal mol ⁻¹) were calculated	
	with DMRG-CASPT2/BS1	S6

S4	Electron configurations and NOONs of investigated states of $C_{2v}(a) \operatorname{MnP-O}_2$.	
	The relative energies without $3s3p$ correlation (in kcal mol ⁻¹) were calculated	
	with DMRG-CASPT2/BS1	S7
S5	Electron configurations and NOONs of investigated states of $C_{2v}(\mathbf{b})$ MnP $-\mathbf{O}_2$.	
	The relative energies without $3s3p$ correlation (in kcal mol ⁻¹) were calculated	
	with DMRG-CASPT2/BS1	S8
$\mathbf{S6}$	Active orbitals of MP	S9
S7	Active orbitals of end-on $\mathrm{MP-O}_2$	S10
$\mathbf{S8}$	Active orbitals of side-on $\mathrm{MP-O}_2$	S11
$\mathbf{S9}$	Active orbitals of ${\rm O}_2$	S12
S10	Schematic representation for the dissociation curves of the ground state ${}^4\mathrm{B}_2$	
	and excited state ${}^{4}B_{1}$ of MnP-O ₂ . The calculations were done with B97-	
	D/def2-TZVP	S12
S11	Structural parameters $d(O-O)$ (red line) and $d(Mn-O)$ (blue line) (in Angstrom)	
	of investigated states of $\rm MnP-O_2$	S13
S12	Correlation between $d(O-O)$ and $d(Mn-O)$ (in Angstrom) in end-on (blue	
	line) and side-on (red line) configurations	S14

List of Tables

S1	Binding energies of $\rm O_2$ to MP (in kcal mol^{-1}), calculated with BP86-D3BJ/def2-	
	QZVPP/def2-TZVP	S14
S2	Binding energies of O_2 to MP (in kcal mol ⁻¹) and counterpoise corrections,	
	calculated with CASPT2 and different basis sets c	S15
S3	3s3p correlation contributions to the binding of ${\rm O}_2$ to MP (in kcal mol^{-1}),	
	calculated with RCCSD, RCCSD(T), and CC-CR(2,3) $\ldots \ldots \ldots \ldots$	S15

S4	3s3p correlation contributions to the ionization of Fe and Mn (in kcal mol ⁻¹),					
	calculated with $\operatorname{RCCSD}(T)$ and CASPT2, aug-cc-pwCVTZ-DK basis set $~$	S16				
S5	NPA charge of the metal atom in FeP, MnP, $[Fe(tpps)]^{4-}$, $[Mn(tpps)]^{4-}$, and					
	$[{\rm FehemeH}]^+,$ calculated with BP86-D3BJ/def2-QZVPP/def2-TZVP $\ . \ . \ . \ .$	S16				
S6	Approximated computational cost of the most expensive calculations: com-					
	putational time, memory, disk space	S17				
S7	BP86 structure of MnP ${}^{6}A_{1g}$	S18				
S8	BP86 structure of MnP $-O_2$ ⁴ B ₂	S19				
S9	BP86 structure of FeP ${}^{3}A_{2g}$	S20				
S10	BP86 structure of FeP $-O_2$ ¹ A'	S21				

Figure S1: Electron configurations and NOONs of investigated states of FeP $-O_2$. The relative energies without 3s3p correlation (in kcal mol⁻¹) were calculated with DMRG-CASPT2/BS1

Figure S2: Electron configurations and NOONs of investigated states of $C_s(a)$ MnP $-O_2$. The relative energies without 3s3p correlation (in kcal mol⁻¹) were calculated with DMRG-CASPT2/BS1

Figure S3: Electron configurations and NOONs of investigated states of $C_s(b)$ MnP $-O_2$. The relative energies without 3s3p correlation (in kcal mol⁻¹) were calculated with DMRG-CASPT2/BS1

						b ₁			Relative energy (kcal/mol)
	⁴ B ₁	1 0.99	1.00	↓ 1.31	0.71	1.00	↓ 1.79	0.22	13.3
	⁴ B ₁	1 .00	0.07	1 .04	0.04	↓ 1.93	↓ 1.94	1.01	49.9
	⁴ B ₁	↓ 1.94	– 0.98	1 .02	0.04	 0.08	↓ 1.94	1.02	64.1
	⁴ A ₂	 0.99	1 .00	↓ 1.94	1 .00	 0.11	↓ 1.78	0.27	52.0
	⁴ A ₂	– 0.98	1 .00	1 .03	0.06	↓ 1.93	↓ 1.64	0.39	37.9
	⁴ A ₂	↓ 1.97	– 0.99	 0.69	 0.02	 0.99	↓ 1.44	 0.98	55.2
С _{2v} (а)	⁴ A ₁	↓ 1.90	 0.11	1.02	0.03	1.00	↓ 1.94	1.02	48.9
	⁴ B ₂	1 .00	 0.08	↓ 1.97	1 .00	1 .00	↓ 1.72	 0.30	40.7
	⁴ B ₂	1 .01	_ ↓ 0.98	 0.67	0.05	↓ 1.94	↓ 1.46	 0.98	62.1
	⁴ B ₂	– 0.99	↓ 1.96	 1.02	 0.03	1 0.99	↓ 1.83	0.20	26.3
	⁶ A ₁	_ ↓ 1.00	 1.00	1.02	0.04	 1.00	↓ 1.96	 1.01	8.9
	⁶ A ₂	 0.05	 1.00	1.03	 1.00	 1.00	↓ 1.95	1.01	52.3
	⁶ B ₁	1 .00	– 0.99	1.03	_ _ 1.00	1.00	↓ 1.73	 0.29	15.9
	⁶ B ₂	1 .00	 1.00	1 .02	† 1.00	0.03	↓ 1.96	1 .01	67.4

_

Figure S4: Electron configurations and NOONs of investigated states of $C_{2v}(a)$ MnP $-O_2$. The relative energies without 3s3p correlation (in kcal mol⁻¹) were calculated with DMRG-CASPT2/BS1

		a		a		b ₁	b		Relative energy (kcal/mol)
	⁴ B ₂	0.04	_ ↓ 1.00	↓ 1.93	 1.04	1.00	↓ 1.75	0.27	0.0
	⁴ B ₂		0.54	↓ 1.94	_ ↓ 1.03	1.00	↓ 1.74	0.27	20.2
	⁴ B ₂	 1.00	1 .00	↓ 1.15	0.86	0.04	↓ 1.96	1.01	64.3
	⁴ A ₂	 0.97	 1.00	↓ 1.91	1 .01	0.11	↓ 1.79	0.27	45.8
$C_{\alpha}(\mathbf{b})$	⁴ A ₂	0.03	1.00	↓ 1.13	0.89	1.00	↓ 1.96	1.01	11.8
- 20()	⁴ B ₁	1.00	1.00	↓ 1.21	0.82	1.00	↓ 1.71	0.30	9.1
	⁴ B ₁	0.09	1 .21	↓ 1.57	 1.03	0.44	↓ 1.89	 0.80	62.3
	⁴ A ₁	0.03	0.08	↓ 1.90	 1.05	1.01	↓ 1.93	1.02	42.9
	⁶ A ₂	0.04	_ ↓ 1.00	1.02	1.00	1.00	↓ 1.96	1.01	10.4
	⁶ B ₁	 1.00	1 .00	1.03	 0.99	1.00	↓ 1.74	0.28	20.9

Figure S5: Electron configurations and NOONs of investigated states of $C_{2v}(b)$ MnP $-O_2$. The relative energies without 3s3p correlation (in kcal mol⁻¹) were calculated with DMRG-CASPT2/BS1

Figure S6: Active orbitals of MP

Figure S7: Active orbitals of end-on $\rm MP{-}O_2$

Figure S8: Active orbitals of side-on $\rm MP{-}O_2$

Figure S10: Schematic representation for the dissociation curves of the ground state ${}^{4}B_{2}$ and excited state ${}^{4}B_{1}$ of MnP–O₂. The calculations were done with B97-D/def2-TZVP.

Figure S11: Structural parameters $d(\rm O-O)$ (red line) and $d(\rm Mn-O)$ (blue line) (in Angstrom) of investigated states of $\rm MnP-O_2$

Figure S12: Correlation between d(O-O) and d(Mn-O) (in Angstrom) in end-on (blue line) and side-on (red line) configurations

Table S1: Binding energies of $\rm O_2$ to MP (in kcal mol^-1), calculated with BP86-D3BJ/def2-QZVPP/def2-TZVP

	ΔE	Model correction ^{a}
$\begin{tabular}{c} \hline FeP-O_2 \\ [Fe(tpps)]^{4-}-O_2 \\ [FehemeH]^+-O_2 \end{tabular}$	19.57 21.27 15.29	1.70 - 4.28
$\overline{ \begin{split} & \overline{\mathrm{MnP-O}_2} \\ \mathrm{[Mn(tpps)]^{4-}-O_2} \end{split} }$	$35.53 \\ 38.05$	2.52

^{*a*}Model correction going from MP to the large complexes.

	FeP	$\rm FeP-O_2$		$-O_2$
	$nosp^a$	$+\mathrm{sp}^b$	$nosp^a$	$+\mathrm{sp}^b$
Binding energy				
ANO-RCC	13.60	15.62	9.80	13.36
awCQZ/aTZ	14.32	15.17	11.45	13.88
awCQZ/aQZ	13.13	14.03	10.18	12.71
awC5Z/aQZ	13.28	14.11	10.67	12.93
CBS[Q:5]/Q	13.44	14.20	11.17	13.15
Counterpoise correction				
ANO-RCC	4.67	6.08	5.53	6.81
awCQZ/aTZ	3.21	3.29	4.24	4.34
awCQZ/aQZ	1.29	1.39	1.51	1.65
awC5Z/aQZ	1.31	1.40	1.66	1.81

Table S2: Binding energies of O_2 to MP (in kcal mol⁻¹) and counterpoise corrections, calculated with CASPT2 and different basis sets^c

^{*a*}Only valence correlation. ^{*b*}Including 3s3p correlation. ^{*c*}Basis set notation: awCnZ/a(n-1)Z = aug-cc-pwCnZ-DK for the metal atom; aug-cc-pV(n-1)Z-DK for C, N, O; cc-pV(n-1)Z-DK for H. CBS[Q:5]/Q = complete basis set extrapolation from awCQZ/aQZ and awC5Z/aQZ results.

Table S3: 3s3p correlation contributions to the binding of O_2 to MP (in kcal mol⁻¹), calculated with RCCSD, RCCSD(T), and CC-CR(2,3)

	$\rm FeP-O_2$	$MnP-O_2$
RCCSD	-4.13	-0.94
$\mathrm{RCCSD}(\mathrm{T})$	-5.27	1.56
$\operatorname{CC-CR}(2,3)$	-4.72	2.47

		$\operatorname{CCSD}(T)$			CASPT2	
	$nosp^a$	$+\mathrm{sp}^b$	$\Delta_{\rm sp}{}^c$	$nosp^a$	$+\mathrm{sp}^b$	$\Delta_{\rm sp}{}^c$
Fe						
$3d^4 {}^5D$	0.00	0.00	0.00	0.00	0.00	0.00
$3d^4 {}^{3}H$				73.65	70.80	-2.85
$3d^4 \ ^3I$				110.94	106.91	-4.02
$3d^5$ 6S	-1258.07	-1261.95	-3.89	-1259.77	-1266.23	-6.46
$3d^5 \ ^4G$				-1159.75	-1171.27	-11.51
$3d^{5}$ ² I				-1114.43	-1127.34	-12.91
$3d^{6} {}^{5}D$	-1949.56	-1961.81	-12.25	-1949.23	-1963.76	-14.53
$3d^{6} {}^{3}H$				-1887.40	-1905.90	-18.50
$3d^{6}$ ¹ I				-1856.55	-1876.45	-19.90
Mn						
$3d^3 {}^4F$	0.00	0.00	0.00	0.00	0.00	0.00
$3d^{3}$ ² G				54.10	49.12	-4.97
$3d^{4} {}^{5}D$	-1174.23	-1182.23	-8.00	-1174.35	-1184.55	-10.20
$3d^{4}$ ³ H				-1110.59	-1124.01	-13.41
$3d^5$ 6S	-1943.65	-1956.69	-13.04	-1945.02	-1962.95	-17.93
$3d^5 {}^4G$				-1861.12	-1883.91	-22.78
$3d^5 {}^2I$				-1822.74	-1847.20	-24.47

Table S4: 3s3p correlation contributions to the ionization of Fe and Mn (in kcal mol^{-1}), calculated with RCCSD(T) and CASPT2, aug-cc-pwCVTZ-DK basis set

^aOnly valence correlation. ^bIncluding 3s3p correlation. ^c3s3p correlation contribution

Table S5: NPA charge of the metal atom in FeP, MnP, $[Fe(tpps)]^{4-}$, $[Mn(tpps)]^{4-}$, and $[FehemeH]^+$, calculated with BP86-D3BJ/def2-QZVPP/def2-TZVP

	NPA charge
FeP	0.879
$[Fe(tpps)]^{4-}$	0.865
[FehemeH] ⁺	1.079
MnP	1.434
$[Mn(tpps)]^{4-}$	1.428

Table S6: Approximated computational cost of the most expensive calculations: computational time, memory, disk space

	FePO_2 (¹ A' C_s)	$MnPO_2 (^4B_1 C_{2v})$
Computational time		
DMRG sweep $(m=2000)$	~ 3 h/iteration	~ 1 h/iteration
4RDM calculation $(m=2000)$	$\sim 8 h$	$\sim 2.5 \text{ h}$
CASPT2	$\sim 2.5 \text{ d}$	$\sim 1 \text{ d}$
$\operatorname{CR-CC}(2,3)^b$	${\sim}2.5~{\rm d}$	$\sim 10~{\rm d}$
CASPT2 memory	< 30 GB/proc	<15 GB/proc
CASPT2 disk space	$\sim 200 \text{ GB/proc}$	$\sim 100 \text{ GB/proc}$

^{*a*}Calculations done in parallel with 4 processors 256 GB memory, 911 GB disk space, Intel(R) Xeon(R) CPU E5-2680 v3 @ 2.50GHz, 12 cores, 24 threads. ^{*b*}Serial calculations Table S7: BP86 structure of MnP $^6\mathrm{A}_{1g}$

MN	-0.000000	0.000000	0.000000
Ν	-1.477351	-1.477351	0.000000
С	3.461810	0.000000	0.000000
С	0.000000	-3.461810	0.000000
С	2.549709	-3.522800	0.000000
С	3.522800	-2.549709	0.000000
С	1.266796	-2.842791	0.000000
С	2.842791	-1.266796	0.000000
Η	4.557133	0.000000	0.000000
Η	0.000000	-4.557133	0.000000
Η	4.605370	-2.687615	0.000000
Н	2.687615	-4.605370	0.000000
Ν	-1.477351	1.477351	0.000000
Ν	1.477351	-1.477351	0.000000
Ν	1.477351	1.477351	0.000000
С	-3.461810	-0.000000	0.000000
С	0.000000	3.461810	0.000000
С	2.549709	3.522800	0.000000
С	-2.549709	-3.522800	0.000000
С	-2.549709	3.522800	0.000000
С	3.522800	2.549709	0.000000
С	-3.522800	-2.549709	0.000000
С	-3.522800	2.549709	0.000000
С	1.266796	2.842791	0.000000
С	-1.266796	-2.842791	0.000000
С	-1.266796	2.842791	0.000000
С	2.842791	1.266796	0.000000
С	-2.842791	-1.266796	0.000000
С	-2.842791	1.266796	0.000000
Η	-4.557133	0.000000	0.000000
Η	0.000000	4.557133	0.000000
Η	4.605370	2.687615	0.000000
Η	-4.605370	-2.687615	0.000000
Η	-4.605370	2.687615	0.000000
Η	2.687615	4.605370	0.000000
Η	-2.687615	-4.605370	0.000000
Н	-2.687615	4.605370	0.000000

Table S8: BP86 structure of MnP–O $_2$ $^4\mathrm{B}_2$

MN	0.000000	0.000000	-0.419971
0	0.000000	-0.690632	-2.145037
0	0.000000	0.690632	-2.145037
Ν	0.000000	1.994564	0.201396
Ν	2.012664	0.000000	-0.088239
Ν	-2.012664	0.000000	-0.088239
Ν	0.000000	-1.994564	0.201396
С	-1.101867	2.829377	0.250721
С	2.847991	-1.104753	-0.068042
С	1.101867	2.829377	0.250721
С	2.847991	1.104753	-0.068042
С	0.685172	4.204719	0.417416
С	4.229977	0.686012	-0.103032
С	-0.685172	4.204719	0.417416
С	4.229977	-0.686012	-0.103032
С	-2.847991	-1.104753	-0.068042
С	-1.101867	-2.829377	0.250721
С	-4.229977	-0.686012	-0.103032
С	-0.685172	-4.204719	0.417416
С	-4.229977	0.686012	-0.103032
С	0.685172	-4.204719	0.417416
С	-2.847991	1.104753	-0.068042
С	1.101867	-2.829377	0.250721
С	-2.427695	-2.425180	0.090438
С	-2.427695	2.425180	0.090438
С	2.427695	-2.425180	0.090438
С	2.427695	2.425180	0.090438
Η	-3.198772	3.200491	0.117483
Η	3.198772	-3.200491	0.117483
Η	-5.083078	1.365445	-0.092074
Η	1.366215	-5.051821	0.508024
Η	-5.083078	-1.365445	-0.092074
Η	-1.366215	-5.051821	0.508024
Η	-3.198772	-3.200491	0.117483
Η	3.198772	3.200491	0.117483
Η	1.366215	5.051821	0.508024
Η	5.083078	1.365445	-0.092074
Η	-1.366215	5.051821	0.508024
Н	5.083078	-1.365445	-0.092074

Table S9: BP86 structure of FeP ${}^3\mathrm{A}_{2g}$

\mathbf{FE}	-0.000000	0.000000	0.000000
Ν	-1.412573	-1.412573	0.000000
С	3.437277	-0.000000	0.000000
С	-0.000000	-3.437277	0.000000
С	2.504407	-3.473828	0.000000
С	3.473828	-2.504407	0.000000
С	1.233048	-2.789799	0.000000
С	2.789799	-1.233048	0.000000
Η	4.531268	0.000000	0.000000
Η	0.000000	-4.531268	0.000000
Η	4.557963	-2.625070	0.000000
Η	2.625070	-4.557963	0.000000
Ν	-1.412573	1.412573	0.000000
Ν	1.412573	-1.412573	0.000000
Ν	1.412573	1.412573	0.000000
С	-3.437277	0.000000	0.000000
С	0.000000	3.437277	0.000000
С	2.504407	3.473828	0.000000
С	-2.504407	-3.473828	0.000000
С	-2.504407	3.473828	0.000000
С	3.473828	2.504407	0.000000
С	-3.473828	-2.504407	0.000000
С	-3.473828	2.504407	0.000000
С	1.233048	2.789799	0.000000
С	-1.233048	-2.789799	0.000000
С	-1.233048	2.789799	0.000000
С	2.789799	1.233048	0.000000
С	-2.789799	-1.233048	0.000000
С	-2.789799	1.233048	0.000000
Η	-4.531268	0.000000	0.000000
Η	0.000000	4.531268	0.000000
Η	4.557963	2.625070	0.000000
Η	-4.557963	-2.625070	0.000000
Η	-4.557963	2.625070	0.000000
Η	2.625070	4.557963	0.000000
Η	-2.625070	-4.557963	0.000000
Η	-2.625070	4.557963	0.000000

Table S10: BP86 structure of FeP–O_ $^1\mathrm{A'}$

\mathbf{FE}	-0.035477	0.001436	0.000000
Ο	-0.005914	-1.808768	0.000000
Ο	1.107650	-2.438912	0.000000
Ν	1.362796	0.250373	1.409282
Ν	1.362796	0.250373	-1.409282
Ν	-1.463257	0.160510	1.408574
Ν	-1.463257	0.160510	-1.408574
С	1.181755	0.225776	2.784175
С	1.181755	0.225776	-2.784175
С	2.739197	0.307341	1.231533
С	2.739197	0.307341	-1.231533
С	3.421596	0.333840	2.503499
С	3.421596	0.333840	-2.503499
С	2.452072	0.282953	3.469865
С	2.452072	0.282953	-3.469865
С	-2.841076	0.165785	1.231129
С	-2.841076	0.165785	-1.231129
С	-3.523986	0.171659	2.503559
С	-3.523986	0.171659	-2.503559
С	-2.553811	0.162097	3.470407
С	-2.553811	0.162097	-3.470407
С	-1.282189	0.154233	2.785129
С	-1.282189	0.154233	-2.785129
С	-3.489024	0.165274	0.000000
С	-0.049760	0.168345	3.430778
С	-0.049760	0.168345	-3.430778
С	3.385639	0.330261	0.000000
Η	-0.048987	0.157159	4.524646
Η	-0.048987	0.157159	-4.524646
Η	-2.671491	0.167468	4.554832
Η	-2.671491	0.167468	-4.554832
Η	-4.607891	0.187748	2.623715
Η	-4.607891	0.187748	-2.623715
Η	-4.582888	0.166326	0.000000
Η	4.478863	0.368105	0.000000
Η	4.504139	0.388212	2.624084
Η	4.504139	0.388212	-2.624084
Η	2.569176	0.284253	4.554361
Η	2.569176	0.284253	-4.554361