Supporting Information

Direct evidence for long-lived superoxide radical photo-generated on

TiO₂ and Other Metal Oxide suspensions

Dabin Wang^{1,3}, Lixia Zhao^{1*}, Dan Wang^{1,2}, Li Yan¹, Chuanyong Jing¹, Hui Zhang¹, Liang-Hong Guo^{1,2,4*} Tang, Ning

*To whom corresponding should be addressed: Dr. Lixia Zhao, Prof. Liang-Hong Guo, E-mail: <u>zlx@rcees.ac.cn</u> (LZ), <u>LHGuo@rcees.ac.cn</u> (LHG); Tel:(86) 10-62849338, Fax:(86)10-62849685

Supplementary Figures.

Metal oxide	BET area $(m^{2} \cdot g^{-1})$	Particles size (nm)	Band gap (eV)
Anatase	82.16	<25	3.2
Rutile	26.18	<100	3.2
P25	48.77	<100	3.2
ZnO	10.8	<50	3.2
SnO_2	14.2	<50	3.5
CeO ₂	30-50	<25	3.3
Fe ₂ O ₃	50-245	<50	2.2

Table S1. The BET area, particle size and band gap of metal oxides.

Figure S1. CL for the detection of surface-adsorbed O_2^{\bullet} . (a) CFCL apparatus for Online Detection of O_2^{\bullet} . The concentration of luminal and NPs was 50 uM and 0.1 mg ml⁻¹ respectively; The flow rate was 2.2 mL/min. (b) batch CL for the detection of O_2^{\bullet} on the TiO₂ nanoparticle and its filtrates. The concentration of luminal was 50 uM.

Figure S2. (a) CL intensity of TiO_2 particles and filtrate from the TiO_2 aqueous suspension at pH=7 pre- and post- UV irradiation: (1) TiO_2 particles post-irradiation, (2) filtrate post-irradiation, (3) TiO_2 particles pre-irradiation, (4) filtrate pre-irradiation; (b) CL intensity of TiO_2 particles and filtrate from the TiO_2 aqueous suspension at pH=11 pre- and post- UV irradiation: (1) TiO_2 particles post-irradiation, (2) filtrate post-irradiation, (3) TiO_2 particles pre-irradiation, (4) filtrate pre-irradiation, (2) filtrate post-irradiation, (3) TiO_2 particles pre-irradiation, (4) filtrate pre-irradiation, (2) filtrate post-irradiation, (3) TiO_2 particles pre-irradiation, (4) filtrate pre-irradiation.

Figure S3. CL intensity of $K_2S_2O_4$ -luminol-TiO₂ and $K_2S_2O_4$ -luminol-H₂O system, in which 50uM luminol, 60 mM $K_2S_2O_8$, 0.1g/L TiO₂

Figure S4. (a) Change of Formazan absorption spectra obtained from NBT chemical transformation induced by O_2^{-} before and after the addition of the O_2^{-} scavengers, SOD (a), •OH scavengers, isopropanol (b), 1O_2 scavengers, NaN₃ (c) and Hole scavengers, EDTA (d) in the photocatalytic TiO₂(0.1 mg/ml) suspensions.

Supplementary Disscussion.

Decay Model of O_{2.s}⁻⁻ in TiO₂ suspensions in darkness after UV irradiation.

Though the self-disproportionation of O_2^{\bullet} is a second order reaction, the decay process of O_2^{\bullet} in darkness was yet supposed to obey to the pseudo first order decay kinetics when its concentration in solution was low because almost all the O_2^{\bullet} were adsorbed on TiO₂ surface ^[1]. Given that the O_2^{\bullet} in solution is desorbed from the TiO₂ surface, so the overall decay process of O_2^{\bullet} in darkness after the UV irradiation is shown as follows:

$$O_{2,s}^{\bullet-} \longrightarrow O_{2,f}^{\bullet-} \xrightarrow{k_d} H_2O_2$$

Where $O_{2,s}$ denotes the O_2 adsorbed on TiO₂ surface, $O_{2,f}$ is the O_2 is solution desorbed from TiO₂ surface, H_2O_2 is originated from the disproportionation of O_2 is solution, k_d is the decay rate constant of O_2 in darkness after the irradiation.

As mentioned above, the $O_{2,s}$ remained long-lived in darkness after UV irradiation, while the $O_{2,f}$ from the desorption of $O_{2,s}$ occurred the rapid disproportionation reaction. Therefore, the decay process of $O_{2,s}$ in darkness was actually attributed to the self-disproportionation of $O_{2,f}$ in solution as shown in equation (S1).

$$\frac{-d\left[O_{2,s}^{\bullet-}\right]}{dt} = \frac{-d\left[O_{2,f}^{\bullet-}\right]}{dt} = k_d\left[O_{2,f}^{\bullet-}\right] \tag{S1}$$

Where $[O_{2,s}^{\bullet}]$ is the concentration of $O_{2,s}^{\bullet}$, $[O_{2,f}^{\bullet}]$ is the concentration of $O_{2,f}^{\bullet}$. Because there is adsorption/desorption equilibrium between $O_{2,s}^{\bullet}$ and $O_{2,f}^{\bullet}$ as shown in equation (3), the dissociation equilibrium constant (K_d) of $O_{2,s}^{\bullet}$ could be expressed as follows.

$$K_{d} = \frac{\left[TiOH\right]\left[O_{2,f}^{\bullet-}\right]}{\left[O_{2,s}^{\bullet-}\right]\left[OH^{-}\right]}$$
(S2)

[TiOH] is the concentration of adsorption sites for O_2^{\bullet} , and [OH⁻] is the concentration of OH⁻. In the certain TiO₂ suspensions, the solution pH and number of the surface $-Ti^{4+}$ -OH during the decay process of $O_2^{\bullet-}$ are almost unchanged, thus the

[OH⁻] and [TiOH] are viewed as the constants. Based on this, equation (S2) could be transformed as follows.

$$K_{d}^{'} = \frac{\left[O_{2,f}^{\bullet^{-}}\right]}{\left[O_{2,s}^{\bullet^{-}}\right]} = \frac{K_{d}\left[OH^{-}\right]}{\left[TiOH\right]} \tag{S3}$$

Where K_d is presumed as the apparent dissociation equilibrium constant, it denotes the ratios of $O_{2,f}$ to $O_{2,s}$, then K_d is determined by the K_d , [TiOH] and [OH⁻]. By substituting equation (S3) into the right side term of equation (S1), we can obtain the equation (S4) as follows

$$\frac{-d\left[O_{2,s}^{\bullet^{-}}\right]}{dt} = k_d K_d^{\bullet^{-}} \left[O_{2,s}^{\bullet^{-}}\right] \tag{S4}$$

In equation (S4), there is only one variable, $[O_{2,s}^{\bullet}]$, in certain suspension. Therefore, after assuming that $[O_{2,s}^{\bullet}] = mCL+n$, which is a linear relationship between the $O_{2,s}^{\bullet}$ concentration and CL intensity, the equation (S4) is converted to equation (S5).

$$\frac{-d\left[mCL+n\right]}{dt} = k_d K'_d \left[mCL+n\right] \tag{S5}$$

If the equation (S5) is integrated from t_0 to t, t_0 is the time when irradiation is stopped, equation (S6) with respect to time as independent variable and CL intensity as dependent variable respectively is obtained as follows.

$$CL = \frac{mCL_0 + n}{m} e^{-k_d K_d(t-t_0)} - \frac{n}{m}$$
(S6)

Reference

(1) A. L. Rose, J. W. Moffett, T. D. Waite, Anal. Chem. 2008, 80, 1215-1227.