# **Electronic Supplementary Information**

Intersystem crossing rate dependent dual emission and phosphorescence from cyclometalated platinum complexes: A second order cumulant expansionbased approach

Torsha Moitra,<sup>a</sup> Md Mehboob Alam,<sup>b</sup> and Swapan Chakrabarti<sup>\*a</sup>

<sup>a</sup>Department of Chemistry, University of Calcutta,

92 A.P.C Road, Kolkata - 700009, West Bengal,

India.

<sup>b</sup>Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry,

University of Tromsø - The Arctic University of Norway, Tromsø,

Norway

AUTHOR INFORMATION:

\*EMAIL ID: swcchem@caluniv.ac.in

### **Contents:**

| S.No. | Title                                                           | Page No. |
|-------|-----------------------------------------------------------------|----------|
| 1     | One photon absorption data                                      | S3       |
| 2     | Coordinates of the optimised structures of the Pt(II) complexes | S4       |
| 3     | Vibrational frequencies of the various optimised geometries     | S16      |
| 4     | Displacement vectors                                            | S26      |
| 5     | Reference                                                       | S34      |

### 1. <u>One photon absorption data</u>

Table S1: Adiabatic singlet and triplet excitation wavelengths ( $\lambda$  in nm) accompanied by the major contributing molecular orbitals (MCMO) as obtained by TD-DFT calculations at the B3LYP/cc-pVDZ and LANL2DZ ECP level of theory along with the experimentally observed peaks.<sup>1</sup> Oscillator strengths are given in parentheses.

|                       | Complex 1 |            |                                                 | Сс  | omplex 2   |                                                 |
|-----------------------|-----------|------------|-------------------------------------------------|-----|------------|-------------------------------------------------|
| Excitation            | Exp       | Exp Cal    |                                                 | Exp | Cal        |                                                 |
|                       | λ         | λ (f)      | МСМО                                            | λ   | λ (f)      | МСМО                                            |
| $S_0 \rightarrow S_1$ | 429       | 431(0.39)  | HOMO →LUMO                                      | 462 | 472 (0.57) | HOMO → LUMO                                     |
| $S_0 \rightarrow S_2$ | 411       | 395 (0.30) | HOMO-1 $\rightarrow$ LUMO                       | -   | 390 (0.19) | $HOMO \rightarrow LUMO+1$                       |
| $S_0 \rightarrow S_3$ | -         | 376 (0.00) | HOMO-3 →LUMO                                    | -   | 380(0.11)  | HOMO-1 → LUMO                                   |
| $S_0 \rightarrow S_4$ | -         | 367 (0.02) | HOMO-2 →LUMO                                    | -   | 372 (0.00) | HOMO-3 → LUMO                                   |
| $S_0 \rightarrow S_5$ | -         | 356 (0.29) | HOMO →LUMO+1<br>HOMO-2 →LUMO                    | -   | 357 (0.09) | HOMO → LUMO+2<br>HOMO-2 → LUMO                  |
| $S_0 \rightarrow S_6$ | 339       | 335 (0.06) | HOMO-1 →LUMO+1                                  | 354 | 357 (0.24) | $HOMO \rightarrow LUMO+2$                       |
| $S_0 \rightarrow T_1$ | -         | 572        | $HOMO \rightarrow LUMO$                         | -   | 722        | HOMO → LUMO                                     |
| $S_0 \rightarrow T_2$ | -         | 456        | HOMO-1 → LUMO                                   | -   | 471        | HOMO → LUMO+1<br>HOMO →LUMO+2                   |
| $S_0 \rightarrow T_3$ | -         | 426        | HOMO-1 → LUMO<br>HOMO-2 → LUMO<br>HOMO-4 → LUMO | -   | 437        | HOMO → LUMO+1<br>HOMO -1 → LUMO<br>HOMO-2 →LUMO |
| $S_0 \rightarrow T_4$ | -         | 415        | HOMO-1 → LUMO+2<br>HOMO-2 → LUMO+2              | -   | 427        | HOMO-1 → LUMO<br>HOMO-4 → LUMO                  |
| $S_0 \rightarrow T_5$ | -         | 404        | $HOMO \rightarrow LUMO+1$                       | -   | 413        | HOMO-1 $\rightarrow$ LUMO+2                     |
| $S_0 \rightarrow T_6$ | -         | 387        | $HOMO-3 \rightarrow LUMO$                       | -   | 385        | HOMO $-3 \rightarrow$ LUMO                      |

|                       | Complex 1     |       | Complex 2       |       |
|-----------------------|---------------|-------|-----------------|-------|
| Excitation            | Exp $\lambda$ | Cal λ | $Exp \ \lambda$ | Cal λ |
| $S_0 \rightarrow S_1$ | 429           | 452   | 462             | 472   |
| $S_0 \rightarrow S_2$ | 411           | 414   | -               | 405   |
| $S_0 \rightarrow S_3$ | -             | 413   | -               | 404   |

Table S2: Adiabatic singlet excitation wavelengths ( $\lambda$  in nm) as obtained by RI-CC2 calculations using def-TZVP basis set along with the experimentally observed peaks.<sup>1</sup>

#### 2. Coordinates of the optimised structure of the Pt (II) complexes

Coordinates of the ground state (S<sub>0</sub>) optimized geometry of complex 1:

| С | -1.46948500 | 7.80167500  | 2.92404200  |
|---|-------------|-------------|-------------|
| С | -1.51932600 | 6.84465400  | 1.91473300  |
| С | -0.33673300 | 6.21922500  | 1.51967800  |
| С | 0.89473700  | 6.53765100  | 2.12370600  |
| С | 0.90202100  | 7.50990800  | 3.14180900  |
| С | -0.27246300 | 8.14532200  | 3.54534400  |
| F | -2.60933800 | 8.41184700  | 3.30933100  |
| С | 2.14912900  | 5.86973600  | 1.70103800  |
| С | 2.15570300  | 4.52050800  | 1.32926400  |
| Ν | 3.26808500  | 3.87761800  | 0.93445100  |
| С | 4.47613100  | 4.52345100  | 0.88108100  |
| С | 4.53469100  | 5.87632300  | 1.24869800  |
| С | 3.38619800  | 6.54295900  | 1.65233500  |
| С | 5.57549900  | 3.68011900  | 0.43247700  |
| С | 5.21524700  | 2.33541900  | 0.13519100  |
| С | 6.20723300  | 1.45737400  | -0.30637400 |
| С | 7.54853600  | 1.87129400  | -0.45136700 |
| С | 7.87980100  | 3.21243100  | -0.14936500 |
| С | 6.90696000  | 4.10443100  | 0.28297700  |
| С | 8.56958300  | 0.91830000  | -0.90066000 |
| С | 8.53237600  | -0.46063500 | -0.88128300 |

| С  | 9.70958800  | -1.07611000 | -1.39558500 |
|----|-------------|-------------|-------------|
| С  | 10.66538600 | -0.18412200 | -1.81946400 |
| S  | 10.10263200 | 1.45806100  | -1.58199900 |
| С  | 12.00701600 | -0.47071600 | -2.43507100 |
| С  | 12.09221100 | -0.14640800 | -3.93611300 |
| Pt | 3.29270500  | 1.92661400  | 0.39482900  |
| 0  | 1.18021700  | 1.64620600  | 0.72907900  |
| С  | 0.57383500  | 0.54091400  | 0.54785400  |
| С  | 1.16024100  | -0.66391100 | 0.10121200  |
| С  | 2.50914500  | -0.88153800 | -0.22503600 |
| 0  | 3.47109500  | -0.03180500 | -0.17942400 |
| С  | 2.94348700  | -2.25385300 | -0.68969200 |
| С  | -0.90976500 | 0.56533700  | 0.85036900  |
| Н  | -2.47457300 | 6.60828300  | 1.44388400  |
| Н  | -0.37023000 | 5.48815500  | 0.70982200  |
| Н  | 1.83695700  | 7.75820600  | 3.64788800  |
| Н  | -0.27355600 | 8.89278500  | 4.33993200  |
| Н  | 1.25651100  | 3.90300700  | 1.35335200  |
| Н  | 5.48780700  | 6.40300400  | 1.20368500  |
| Н  | 3.43999700  | 7.60226100  | 1.91098900  |
| Н  | 5.92239700  | 0.43499500  | -0.55831900 |
| Н  | 8.91404500  | 3.54988400  | -0.23965200 |
| Н  | 7.19407500  | 5.13375700  | 0.51132000  |
| Н  | 7.68745800  | -1.02083200 | -0.48159300 |
| Н  | 9.85338700  | -2.15687700 | -1.44445200 |
| Н  | 12.22471900 | -1.53995200 | -2.27439300 |
| Н  | 12.79297300 | 0.08841200  | -1.89727000 |
| Н  | 11.90303600 | 0.92263200  | -4.12501400 |
| Н  | 11.34706600 | -0.72307200 | -4.50714700 |
| Н  | 13.09266500 | -0.38854800 | -4.33020000 |
| Н  | 0.49496300  | -1.52057000 | -0.00253700 |
| Н  | 2.11188200  | -2.96972600 | -0.72778400 |
| Н  | 3.72264200  | -2.63794600 | -0.01152700 |
| Н  | 3.39939900  | -2.17194600 | -1.68958500 |

| Н | -1.39666600 | 1.32725800  | 0.22002000 |
|---|-------------|-------------|------------|
| Н | -1.06140900 | 0.87061700  | 1.89851900 |
| Н | -1.39592200 | -0.40506700 | 0.68299700 |

Coordinates of the first excited singlet state  $(S_1)$  optimized geometry of complex 1:

| С  | -1.43853300 | 7.80128300  | 3.02575800  |
|----|-------------|-------------|-------------|
| С  | -1.53947700 | 6.68103000  | 2.20182000  |
| С  | -0.37545900 | 6.05968300  | 1.75897500  |
| С  | 0.90629500  | 6.53220600  | 2.12985900  |
| С  | 0.95828900  | 7.67499200  | 2.96262800  |
| С  | -0.20095600 | 8.30662000  | 3.41123700  |
| F  | -2.56703600 | 8.41151800  | 3.45205500  |
| С  | 2.13865800  | 5.87715700  | 1.66883900  |
| С  | 2.13869600  | 4.52978600  | 1.30211200  |
| Ν  | 3.23594900  | 3.87101600  | 0.88599000  |
| С  | 4.47131100  | 4.54139000  | 0.80289700  |
| С  | 4.52662100  | 5.89491400  | 1.16380900  |
| С  | 3.39767900  | 6.57081200  | 1.59432500  |
| С  | 5.54329600  | 3.69843300  | 0.34415400  |
| С  | 5.17211300  | 2.31746700  | 0.05813200  |
| С  | 6.13557700  | 1.41603000  | -0.39301200 |
| С  | 7.47756100  | 1.80312700  | -0.58368600 |
| С  | 7.81859800  | 3.16408000  | -0.29635500 |
| С  | 6.88218200  | 4.08584600  | 0.15413800  |
| С  | 8.47960800  | 0.86463400  | -1.05297600 |
| С  | 8.33578800  | -0.47872700 | -1.37827700 |
| С  | 9.53673200  | -1.09817800 | -1.80418300 |
| С  | 10.63151100 | -0.25819300 | -1.81897700 |
| S  | 10.16684200 | 1.34504900  | -1.29126900 |
| С  | 12.04155800 | -0.56736000 | -2.23299700 |
| С  | 12.45656100 | 0.06491900  | -3.57352300 |
| Pt | 3.28014400  | 1.93280800  | 0.37082400  |
| 0  | 1.18513700  | 1.64878900  | 0.75862100  |

| С | 0.57045600  | 0.53897800  | 0.61315900  |
|---|-------------|-------------|-------------|
| С | 1.13820600  | -0.67430800 | 0.17289400  |
| С | 2.47826500  | -0.90413900 | -0.19003300 |
| 0 | 3.44116400  | -0.05801800 | -0.18818700 |
| С | 2.89043000  | -2.28685900 | -0.64225200 |
| С | -0.90206000 | 0.57866500  | 0.95654200  |
| Н | -2.52542000 | 6.31971200  | 1.90514400  |
| Н | -0.46507300 | 5.20566400  | 1.08587900  |
| Н | 1.92355400  | 8.06014900  | 3.29376100  |
| Н | -0.15645100 | 9.18139800  | 4.06206800  |
| Н | 1.23860600  | 3.91716700  | 1.35742800  |
| Н | 5.48036400  | 6.42097900  | 1.09315000  |
| Н | 3.45848800  | 7.63168900  | 1.83278400  |
| Н | 5.82148100  | 0.39186400  | -0.59618300 |
| Н | 8.85025300  | 3.49510000  | -0.43459400 |
| Н | 7.19949700  | 5.11044200  | 0.35677300  |
| Н | 7.38419700  | -1.00393100 | -1.30823800 |
| Н | 9.60355800  | -2.14810300 | -2.09437400 |
| Н | 12.13744400 | -1.66420400 | -2.29542000 |
| Н | 12.74310200 | -0.23923100 | -1.44540300 |
| Н | 12.39461400 | 1.16426700  | -3.53233400 |
| Н | 11.80171100 | -0.27701200 | -4.39074700 |
| Н | 13.49444700 | -0.20745400 | -3.82480800 |
| Н | 0.46696200  | -1.52957500 | 0.10425000  |
| Н | 2.05548600  | -2.99957100 | -0.63863600 |
| Н | 3.69081500  | -2.66051000 | 0.01675000  |
| Н | 3.31222600  | -2.22547700 | -1.65853500 |
| Н | -1.40084500 | 1.33043600  | 0.32344300  |
| Н | -1.02068700 | 0.90980400  | 2.00097000  |
| Н | -1.39803200 | -0.39205200 | 0.82482900  |

Coordinates of the first excited triplet state  $(T_1)$  optimized geometry of complex 1:

C -1.41017400 7.81412600 2.98160700

| С  | -1.50775200 | 6.73009300  | 2.11287000  |
|----|-------------|-------------|-------------|
| С  | -0.34142100 | 6.09827200  | 1.68671500  |
| С  | 0.93219900  | 6.53106200  | 2.11856200  |
| С  | 0.98292400  | 7.63415900  | 2.99866200  |
| С  | -0.17642400 | 8.27605500  | 3.43101100  |
| F  | -2.53704200 | 8.43181400  | 3.39526500  |
| С  | 2.16453000  | 5.86124000  | 1.66851800  |
| С  | 2.15929400  | 4.50195700  | 1.30669600  |
| N  | 3.24535800  | 3.84401000  | 0.89432900  |
| С  | 4.48059200  | 4.49315100  | 0.79878300  |
| С  | 4.54300900  | 5.86715100  | 1.15595100  |
| С  | 3.41821400  | 6.53564800  | 1.58172900  |
| С  | 5.53508500  | 3.66879600  | 0.34591600  |
| С  | 5.17131400  | 2.28066800  | 0.05752200  |
| С  | 6.13454700  | 1.41471400  | -0.38621000 |
| С  | 7.50960400  | 1.82834400  | -0.58123200 |
| С  | 7.83856700  | 3.21292700  | -0.28586800 |
| С  | 6.89761300  | 4.09432500  | 0.15731300  |
| С  | 8.48430900  | 0.92797000  | -1.03793200 |
| С  | 8.33516200  | -0.45138200 | -1.37046900 |
| С  | 9.51693700  | -1.06184500 | -1.79649000 |
| С  | 10.62885000 | -0.22260800 | -1.82064700 |
| S  | 10.19031100 | 1.39807100  | -1.29136800 |
| С  | 12.02923700 | -0.54838200 | -2.24342100 |
| С  | 12.45022600 | 0.09764400  | -3.57682600 |
| Pt | 3.25763200  | 1.89623100  | 0.38137600  |
| 0  | 1.15222400  | 1.62746500  | 0.78086100  |
| С  | 0.53922900  | 0.52130300  | 0.63582900  |
| С  | 1.10815300  | -0.69365000 | 0.19256700  |
| С  | 2.44562000  | -0.92282200 | -0.17160400 |
| 0  | 3.41174000  | -0.07797200 | -0.17158300 |
| С  | 2.85756700  | -2.30634900 | -0.62527500 |
| С  | -0.93522200 | 0.55498600  | 0.98074600  |
| Н  | -2.49041200 | 6.40179200  | 1.77100700  |

| Н | -0.42330200 | 5.26935500  | 0.98200300  |
|---|-------------|-------------|-------------|
| Н | 1.94506500  | 7.98202300  | 3.37796700  |
| Н | -0.13671800 | 9.12183700  | 4.11904100  |
| Н | 1.25627900  | 3.89232900  | 1.36419200  |
| Н | 5.49507600  | 6.39265300  | 1.07807300  |
| Н | 3.48336400  | 7.59719400  | 1.82442300  |
| Н | 5.84867900  | 0.38378900  | -0.59653100 |
| Н | 8.86706900  | 3.55350800  | -0.42356700 |
| Н | 7.18408500  | 5.12653500  | 0.36818800  |
| Н | 7.38071400  | -0.96772000 | -1.29202200 |
| Н | 9.58201800  | -2.11185700 | -2.08725300 |
| Н | 12.11127400 | -1.64540200 | -2.32061700 |
| Н | 12.73712400 | -0.23733800 | -1.45372400 |
| Н | 12.40016700 | 1.19674300  | -3.52087100 |
| Н | 11.79187000 | -0.22675500 | -4.39826700 |
| Н | 13.48490500 | -0.18334200 | -3.83099100 |
| Н | 0.43672800  | -1.54910400 | 0.12422500  |
| Н | 2.02241400  | -3.01916100 | -0.62077600 |
| Н | 3.65844800  | -2.68143000 | 0.03239800  |
| Н | 3.27752600  | -2.24567800 | -1.64242100 |
| Н | -1.43901400 | 1.30392100  | 0.34805000  |
| Н | -1.05578600 | 0.88372500  | 2.02579600  |
| Н | -1.42758100 | -0.41779000 | 0.84877800  |

Coordinates of the second excited triplet state  $(T_2)$  optimized geometry of complex 1:

| С | -1.48133300 | 7.79666200 | 3.02398100 |
|---|-------------|------------|------------|
| С | -1.56582000 | 6.72852900 | 2.13415200 |
| С | -0.39220300 | 6.11834300 | 1.69580200 |
| С | 0.87780000  | 6.55059900 | 2.13976600 |
| С | 0.91435500  | 7.63839000 | 3.04016600 |
| С | -0.25250100 | 8.26166800 | 3.48191900 |
| F | -2.61705100 | 8.39660500 | 3.44696400 |
| С | 2.11899900  | 5.90089600 | 1.68295500 |

| С  | 2.13749700  | 4.55348900  | 1.31476400  |
|----|-------------|-------------|-------------|
| Ν  | 3.24334000  | 3.91555700  | 0.90083500  |
| С  | 4.46985700  | 4.57919800  | 0.81358600  |
| С  | 4.50770600  | 5.94397500  | 1.17914300  |
| С  | 3.37089400  | 6.59506400  | 1.60531100  |
| С  | 5.54069100  | 3.75334600  | 0.35561200  |
| С  | 5.17629400  | 2.38725300  | 0.07308700  |
| С  | 6.15364000  | 1.47034400  | -0.38734900 |
| С  | 7.50878500  | 1.85359300  | -0.58631800 |
| С  | 7.83196200  | 3.20672500  | -0.29859000 |
| С  | 6.88883100  | 4.12480700  | 0.15519200  |
| С  | 8.47524300  | 0.88835300  | -1.05712800 |
| С  | 8.28687000  | -0.46747900 | -1.37516200 |
| С  | 9.46046100  | -1.12173000 | -1.80827000 |
| С  | 10.58476200 | -0.31764400 | -1.84230600 |
| S  | 10.17116000 | 1.32137300  | -1.31525700 |
| С  | 11.98173400 | -0.66643200 | -2.26138900 |
| С  | 12.42967000 | -0.01037300 | -3.57982100 |
| Pt | 3.30475700  | 1.95651700  | 0.37498500  |
| 0  | 1.23253800  | 1.62779500  | 0.75656900  |
| С  | 0.62379600  | 0.51183000  | 0.61167500  |
| С  | 1.20626000  | -0.69130200 | 0.16797500  |
| С  | 2.55190200  | -0.89652100 | -0.19611800 |
| 0  | 3.49308300  | -0.02779100 | -0.18840900 |
| С  | 2.99232600  | -2.26800200 | -0.65302800 |
| С  | -0.84659600 | 0.53859500  | 0.95931800  |
| Н  | -2.54461100 | 6.39858000  | 1.78237700  |
| Н  | -0.46452700 | 5.30649500  | 0.97002000  |
| Н  | 1.87266300  | 7.98857500  | 3.42721900  |
| Н  | -0.22100500 | 9.09603600  | 4.18440900  |
| Н  | 1.24388800  | 3.93042900  | 1.36662600  |
| Н  | 5.45349800  | 6.48343000  | 1.10993900  |
| Н  | 3.42039300  | 7.65577400  | 1.85459800  |
| Н  | 5.83071900  | 0.44834700  | -0.58656300 |

| Н | 8.86049700  | 3.54792200  | -0.43697700 |
|---|-------------|-------------|-------------|
| Н | 7.21192800  | 5.14895100  | 0.35516400  |
| Н | 7.32235000  | -0.96609300 | -1.29214900 |
| Н | 9.49162600  | -2.17530200 | -2.09195500 |
| Н | 12.03765400 | -1.76401000 | -2.35621300 |
| Н | 12.69265700 | -0.38851200 | -1.46171200 |
| Н | 12.40450700 | 1.08889600  | -3.50748800 |
| Н | 11.77014000 | -0.30552300 | -4.41151800 |
| Н | 13.45998500 | -0.30981900 | -3.83195800 |
| Н | 0.54879100  | -1.55695200 | 0.09714900  |
| Н | 2.17125800  | -2.99651300 | -0.65339900 |
| Н | 3.79847200  | -2.62873000 | 0.00595400  |
| Н | 3.41405400  | -2.19445500 | -1.66838500 |
| Н | -1.35349000 | 1.28843300  | 0.33060300  |
| Н | -0.96484900 | 0.86471500  | 2.00526900  |
| Н | -1.33430700 | -0.43590800 | 0.82538200  |

Coordinates of the ground state  $(S_0)$  optimized geometry of complex 2:

| С | 5.31802800  | 3.74605000 | 0.24714900  |
|---|-------------|------------|-------------|
| С | 5.25942900  | 2.35457400 | 0.32540700  |
| С | 6.48917700  | 1.80412600 | 0.77145400  |
| С | 7.46977500  | 2.75137800 | 1.03023300  |
| S | 6.87814700  | 4.38704200 | 0.72735600  |
| С | -2.14482700 | 6.79442400 | -2.46048500 |
| С | -2.08308000 | 5.69370200 | -1.61109500 |
| С | -0.83612000 | 5.25352900 | -1.16694900 |
| С | 0.35145100  | 5.89763600 | -1.56515000 |
| С | 0.24509000  | 7.00623900 | -2.42688600 |
| С | -0.99539400 | 7.46017100 | -2.87558300 |
| F | -3.34836000 | 7.22731800 | -2.89137300 |
| С | 1.67428700  | 5.42523300 | -1.09240900 |
| С | 1.92880900  | 4.05972000 | -0.91177100 |
| Ν | 3.10802000  | 3.58555900 | -0.48191200 |

| С  | 4.14865400  | 4.44317000  | -0.19713100 |
|----|-------------|-------------|-------------|
| С  | 3.95902800  | 5.82607700  | -0.36422400 |
| С  | 2.73629700  | 6.30891100  | -0.80505600 |
| Pt | 3.51262400  | 1.60322200  | -0.21156000 |
| 0  | 1.56312200  | 0.96945200  | -0.82788900 |
| С  | 1.19921100  | -0.25172700 | -0.87595200 |
| С  | 1.99268800  | -1.36833200 | -0.53490700 |
| С  | 3.32294400  | -1.35861900 | -0.08198800 |
| 0  | 4.07501600  | -0.33521100 | 0.10814700  |
| С  | 4.00539800  | -2.67028500 | 0.23522900  |
| С  | -0.22158800 | -0.47672900 | -1.34700400 |
| С  | 10.98353300 | 1.53859600  | 2.36527200  |
| С  | 11.06457700 | 2.88769400  | 2.11360200  |
| С  | 9.85635500  | 3.45729600  | 1.62267000  |
| С  | 8.82677500  | 2.54533600  | 1.49162700  |
| S  | 9.37468200  | 0.94811000  | 1.99465700  |
| С  | 12.05879700 | 0.61138700  | 2.85951100  |
| С  | 12.58720200 | -0.36306800 | 1.79314500  |
| Н  | 6.65600500  | 0.73358300  | 0.89186500  |
| Н  | -3.00583000 | 5.20303700  | -1.29814600 |
| Н  | -0.78906600 | 4.40834900  | -0.47776700 |
| Н  | 1.14856600  | 7.51005300  | -2.77585100 |
| Н  | -1.08138600 | 8.31336500  | -3.54999400 |
| Н  | 1.18165000  | 3.29450500  | -1.12842200 |
| Н  | 4.77741200  | 6.50890000  | -0.13243400 |
| Н  | 2.58887600  | 7.38583200  | -0.90780400 |
| Н  | 1.52379900  | -2.34693900 | -0.63286000 |
| Н  | 4.34029200  | -2.66153300 | 1.28502900  |
| Н  | 4.90814300  | -2.77090200 | -0.38868700 |
| Н  | 3.35183900  | -3.53690200 | 0.07007200  |
| Н  | -0.91543300 | 0.05650300  | -0.67680300 |
| Н  | -0.49683400 | -1.53932900 | -1.37930000 |
| Н  | -0.34478300 | -0.03938100 | -2.35112000 |
| Н  | 11.97800300 | 3.46131200  | 2.27847100  |

| Н | 9.74752900  | 4.51140900  | 1.36509100 |
|---|-------------|-------------|------------|
| Н | 11.68730500 | 0.03609100  | 3.72585600 |
| Н | 12.88734200 | 1.23454100  | 3.23553700 |
| Н | 13.00512400 | 0.18268900  | 0.93218600 |
| Н | 11.78412700 | -1.01684500 | 1.41648000 |
| Н | 13.37856900 | -1.00532200 | 2.21246400 |

Coordinates of the first excited singlet state  $(S_1)$  optimized geometry of complex 2:

| С  | 5.32296100  | 3.73930100  | 0.25751900  |
|----|-------------|-------------|-------------|
| С  | 5.24384300  | 2.30880300  | 0.35286300  |
| С  | 6.45097400  | 1.74817400  | 0.80530900  |
| С  | 7.45683300  | 2.67689800  | 1.06221700  |
| S  | 6.88044900  | 4.35596800  | 0.72599500  |
| С  | -2.09559800 | 6.78734200  | -2.54907600 |
| С  | -2.03122100 | 5.58494900  | -1.84687300 |
| С  | -0.79810500 | 5.14251200  | -1.37577500 |
| С  | 0.38791600  | 5.88035500  | -1.59802900 |
| С  | 0.27298900  | 7.09592800  | -2.31096100 |
| С  | -0.95623800 | 7.54992200  | -2.78699000 |
| F  | -3.29100200 | 7.22325000  | -3.00260500 |
| С  | 1.69375900  | 5.41460000  | -1.10390100 |
| С  | 1.93282700  | 4.05188600  | -0.90100100 |
| Ν  | 3.10545500  | 3.55740200  | -0.46348300 |
| С  | 4.16916700  | 4.44241400  | -0.18896100 |
| С  | 3.98587800  | 5.81874000  | -0.37869700 |
| С  | 2.77394200  | 6.31738000  | -0.83113300 |
| Pt | 3.50072000  | 1.60277800  | -0.17291500 |
| 0  | 1.54286000  | 0.98357500  | -0.78191200 |
| С  | 1.16420800  | -0.23487500 | -0.81753500 |
| С  | 1.94018500  | -1.35949700 | -0.46641500 |
| С  | 3.27151400  | -1.36806700 | -0.01206200 |
| 0  | 4.03913000  | -0.35691600 | 0.16920000  |
| С  | 3.92931000  | -2.68932900 | 0.31678000  |

| С | -0.25919700 | -0.44316600 | -1.28622100 |
|---|-------------|-------------|-------------|
| С | 10.98745700 | 1.51332500  | 2.33952900  |
| С | 10.99755400 | 2.88950400  | 2.22608800  |
| С | 9.77761700  | 3.44270000  | 1.77177200  |
| С | 8.79074900  | 2.48703100  | 1.52254000  |
| S | 9.42211400  | 0.87117500  | 1.87168800  |
| С | 12.10294500 | 0.60462000  | 2.76662100  |
| С | 12.69905200 | -0.23959300 | 1.62535300  |
| Н | 6.59266500  | 0.67607900  | 0.94368000  |
| Н | -2.94635400 | 5.01928400  | -1.66498300 |
| Н | -0.76170800 | 4.21818800  | -0.79720000 |
| Н | 1.16628900  | 7.68379900  | -2.52649700 |
| Н | -1.04071800 | 8.48293000  | -3.34647300 |
| Н | 1.17684300  | 3.29542200  | -1.11393200 |
| Н | 4.81307700  | 6.49546400  | -0.15456700 |
| Н | 2.63507700  | 7.39245400  | -0.93745800 |
| Н | 1.45559900  | -2.33111900 | -0.55591600 |
| Н | 4.26277600  | -2.67743000 | 1.36704300  |
| Н | 4.83110500  | -2.81067300 | -0.30487200 |
| Н | 3.26085700  | -3.54558100 | 0.15778900  |
| Н | -0.94405500 | 0.10550500  | -0.61928300 |
| Н | -0.54986500 | -1.50174600 | -1.31104700 |
| Н | -0.37588800 | -0.00993900 | -2.29284900 |
| Н | 11.87627700 | 3.48764900  | 2.47244000  |
| Н | 9.61177000  | 4.51080700  | 1.62866200  |
| Н | 11.74933400 | -0.06916200 | 3.56767800  |
| Н | 12.89134500 | 1.23213400  | 3.21452500  |
| Н | 13.10175100 | 0.40396300  | 0.82715200  |
| Н | 11.93777500 | -0.89632900 | 1.17464500  |
| Н | 13.51599500 | -0.87579400 | 2.00253200  |

Coordinates of the first excited triplet state  $(T_1)$  optimized geometry of complex 2:

C 5.32422500 3.73853400 0.25434000

| С  | 5.25816200  | 2.28160000  | 0.35561200  |
|----|-------------|-------------|-------------|
| С  | 6.44220400  | 1.74849400  | 0.80003700  |
| С  | 7.47520800  | 2.70646500  | 1.06633500  |
| S  | 6.88132800  | 4.38799800  | 0.72378100  |
| С  | -2.08926500 | 6.78962800  | -2.51822000 |
| С  | -2.02870900 | 5.61957000  | -1.76582200 |
| С  | -0.79034800 | 5.17464800  | -1.30695400 |
| С  | 0.39823100  | 5.88164300  | -1.59173800 |
| С  | 0.28960200  | 7.06237700  | -2.35727800 |
| С  | -0.94329300 | 7.51952600  | -2.82045700 |
| F  | -3.28641400 | 7.22681200  | -2.96264300 |
| С  | 1.70802000  | 5.40846400  | -1.10721400 |
| С  | 1.95171700  | 4.03751400  | -0.90669300 |
| Ν  | 3.11657000  | 3.55164200  | -0.47217700 |
| С  | 4.18086500  | 4.41732200  | -0.19007700 |
| С  | 3.99424600  | 5.81235700  | -0.37703500 |
| С  | 2.78698700  | 6.29694900  | -0.82658300 |
| Pt | 3.50217200  | 1.57862500  | -0.18097900 |
| 0  | 1.54179900  | 0.97355800  | -0.79853000 |
| С  | 1.15795500  | -0.24204900 | -0.83748100 |
| С  | 1.92993100  | -1.36974900 | -0.48537000 |
| С  | 3.25928500  | -1.38149200 | -0.02771200 |
| 0  | 4.02970600  | -0.37228100 | 0.15710600  |
| С  | 3.91443200  | -2.70419900 | 0.30176100  |
| С  | -0.26527700 | -0.44606900 | -1.31071700 |
| С  | 10.98088700 | 1.53200700  | 2.34246100  |
| С  | 10.99191700 | 2.91440100  | 2.22936100  |
| С  | 9.78576600  | 3.47340000  | 1.77763500  |
| С  | 8.77681500  | 2.51106700  | 1.51913000  |
| S  | 9.41156200  | 0.88308600  | 1.87085000  |
| С  | 12.09496200 | 0.62367900  | 2.77139000  |
| С  | 12.68061500 | -0.23515900 | 1.63578500  |
| Н  | 6.60450100  | 0.68000600  | 0.94496000  |
| Н  | -2.94837900 | 5.07898600  | -1.53731400 |

| Н | -0.75261800 | 4.27447500  | -0.69135700 |
|---|-------------|-------------|-------------|
| Н | 1.18819400  | 7.62193900  | -2.62240400 |
| Н | -1.02590000 | 8.42680500  | -3.42068800 |
| Н | 1.19582600  | 3.27978300  | -1.11893500 |
| Н | 4.81748500  | 6.49077100  | -0.14777400 |
| Н | 2.64793100  | 7.37302600  | -0.93994600 |
| Н | 1.44332800  | -2.34021700 | -0.57730500 |
| Н | 4.24506900  | -2.69417500 | 1.35289400  |
| Н | 4.81762900  | -2.82674700 | -0.31753800 |
| Н | 3.24480300  | -3.55911000 | 0.14008000  |
| Н | -0.95154000 | 0.10200000  | -0.64464900 |
| Н | -0.55809500 | -1.50407100 | -1.33813300 |
| Н | -0.37882100 | -0.01176400 | -2.31727400 |
| Н | 11.87378200 | 3.50714200  | 2.47860500  |
| Н | 9.62254100  | 4.54151900  | 1.63589500  |
| Н | 11.74225300 | -0.04077800 | 3.58093800  |
| Н | 12.88917000 | 1.25117300  | 3.20929700  |
| Н | 13.08402000 | 0.39794600  | 0.82953400  |
| Н | 11.91295400 | -0.89066200 | 1.19432500  |
| Н | 13.49500600 | -0.87341700 | 2.01488600  |

# 3. <u>Vibrational frequencies of the various optimised geometries</u>

Vibrational frequencies of complex 1 in cm<sup>-1</sup>:

| $\mathbf{S}_1$ | $T_1$  | $T_2$   |
|----------------|--------|---------|
| 30.242         | 30.041 | i21.535 |
| 45.844         | 44.509 | 30.079  |
| 52.426         | 51.058 | 40.917  |
| 57.247         | 55.763 | 46.059  |
| 59.63          | 59.446 | 51.628  |
| 66.296         | 63.692 | 56.614  |
| 82.965         | 75.118 | 64.58   |
|                |        |         |

| 92.912  | 89.829  | 70.442  |
|---------|---------|---------|
| 95.392  | 92.417  | 88.282  |
| 101.64  | 96.105  | 92.375  |
| 117.038 | 111.702 | 102.192 |
| 135.365 | 129.302 | 112.387 |
| 146.156 | 144.846 | 124.422 |
| 151.626 | 148.829 | 130.288 |
| 163.729 | 157.11  | 151.499 |
| 166.309 | 161.932 | 158.452 |
| 181.518 | 178     | 174.551 |
| 186.448 | 181.689 | 178.932 |
| 192.938 | 183.651 | 182.446 |
| 200.335 | 198.161 | 192.763 |
| 222.169 | 220.641 | 213.927 |
| 241.393 | 228.184 | 220.856 |
| 255.804 | 247.333 | 236.552 |
| 262.355 | 259.452 | 241.122 |
| 276.128 | 278.284 | 266.825 |
| 296.03  | 291.194 | 279.51  |
| 297.056 | 294.686 | 293.481 |
| 300.99  | 296.74  | 295.112 |
| 309.75  | 301.196 | 298.7   |
| 326.876 | 314.46  | 309.345 |
| 333.963 | 321.312 | 319.426 |
| 367.588 | 356.057 | 356.613 |
| 375.182 | 370.227 | 370.079 |
| 385.28  | 376.638 | 379.372 |
| 410.938 | 395.163 | 397.757 |
| 426.372 | 421.202 | 414.22  |
| 431.934 | 432.68  | 425.446 |
| 438.922 | 436.678 | 435.475 |
| 441.109 | 438.99  | 439.47  |
| 452.246 | 441.289 | 442.142 |

| 457.902 | 447.839 | 444.99  |
|---------|---------|---------|
| 473.996 | 464.094 | 464.564 |
| 483.628 | 473.853 | 474.456 |
| 528.232 | 502.545 | 502.4   |
| 543.093 | 520.998 | 515.872 |
| 550.513 | 539.458 | 537.615 |
| 573.273 | 554.417 | 541.768 |
| 583.763 | 568.839 | 555.249 |
| 601.787 | 578.05  | 569.468 |
| 608.044 | 583.367 | 583.724 |
| 614.416 | 595.5   | 590.728 |
| 626.607 | 609.661 | 608.773 |
| 639.129 | 614.655 | 616.832 |
| 647.239 | 622.822 | 621.305 |
| 656.858 | 645.69  | 644.717 |
| 670.284 | 654.744 | 658.265 |
| 679.232 | 672.038 | 666.769 |
| 689.592 | 681.986 | 681.509 |
| 699.2   | 688.719 | 688.872 |
| 719.366 | 702.996 | 700.965 |
| 737.585 | 708.96  | 706.834 |
| 743.493 | 729.385 | 728.746 |
| 754.278 | 738.3   | 736.547 |
| 783.975 | 760.03  | 752.081 |
| 795.892 | 773.546 | 776.152 |
| 826.61  | 790.517 | 802.541 |
| 830.174 | 813.276 | 812.479 |
| 837.39  | 825.705 | 818.941 |
| 841.001 | 827.853 | 824.94  |
| 848.837 | 832.227 | 831.042 |
| 858.41  | 845.869 | 835.69  |
| 869.085 | 857.569 | 848.224 |
| 884.727 | 877.63  | 856.54  |

| 919.089                                                 | 908.714                                                              | 875.902                                                          |
|---------------------------------------------------------|----------------------------------------------------------------------|------------------------------------------------------------------|
| 939.084                                                 | 915.411                                                              | 914.876                                                          |
| 941.595                                                 | 921.896                                                              | 921.057                                                          |
| 944.607                                                 | 937.747                                                              | 941.957                                                          |
| 948.793                                                 | 939.962                                                              | 942.752                                                          |
| 976.152                                                 | 948.634                                                              | 950.217                                                          |
| 976.801                                                 | 951.629                                                              | 972.002                                                          |
| 984.357                                                 | 983.096                                                              | 981.193                                                          |
| 992.244                                                 | 987.001                                                              | 983.067                                                          |
| 996.374                                                 | 992.024                                                              | 988.068                                                          |
| 1002.355                                                | 994.834                                                              | 993.766                                                          |
| 1006.758                                                | 1001.199                                                             | 997.666                                                          |
| 1014.258                                                | 1003.739                                                             | 1000.581                                                         |
| 1022.413                                                | 1023.192                                                             | 1023.98                                                          |
| 1034.971                                                | 1026.336                                                             | 1029.354                                                         |
| 1047.378                                                | 1033.446                                                             | 1033.871                                                         |
| 1056.456                                                | 1043.064                                                             | 1041.606                                                         |
| 1058.091                                                | 1055.77                                                              | 1056.449                                                         |
| 1062.294                                                | 1062.226                                                             | 1060.855                                                         |
| 1063.353                                                | 1062.789                                                             | 1063.033                                                         |
| 1078.208                                                | 1071.474                                                             | 1077.861                                                         |
| 1094.281                                                | 1077.827                                                             | 1081.509                                                         |
| 1103.899                                                | 1089.818                                                             | 1093.942                                                         |
| 1131.234                                                | 1094.294                                                             | 1100.917                                                         |
| 1133.939                                                | 1128.064                                                             | 1126.832                                                         |
| 1170.039                                                | 1139.139                                                             | 1138.319                                                         |
| 1177 868                                                |                                                                      |                                                                  |
| 11/7.000                                                | 1176.674                                                             | 1169.274                                                         |
| 1191.336                                                | 1176.674<br>1183.979                                                 | 1169.274<br>1180.566                                             |
| 1191.336<br>1196.866                                    | 1176.674<br>1183.979<br>1188.286                                     | 1169.274<br>1180.566<br>1182.479                                 |
| 1191.336<br>1196.866<br>1203.26                         | 1176.674<br>1183.979<br>1188.286<br>1220.606                         | 1169.274<br>1180.566<br>1182.479<br>1193.508                     |
| 1191.336<br>1196.866<br>1203.26<br>1231.563             | 1176.674<br>1183.979<br>1188.286<br>1220.606<br>1232.169             | 1169.274<br>1180.566<br>1182.479<br>1193.508<br>1218             |
| 1191.336<br>1196.866<br>1203.26<br>1231.563<br>1239.345 | 1176.674<br>1183.979<br>1188.286<br>1220.606<br>1232.169<br>1248.843 | 1169.274<br>1180.566<br>1182.479<br>1193.508<br>1218<br>1230.251 |

| 1260.362 | 1262.989 | 1260.508 |
|----------|----------|----------|
| 1269.854 | 1265.678 | 1265.523 |
| 1270.296 | 1267.406 | 1272.676 |
| 1279.649 | 1283.493 | 1284.58  |
| 1310.458 | 1300.953 | 1297.322 |
| 1318.111 | 1316.859 | 1305.427 |
| 1332.092 | 1322.298 | 1322.671 |
| 1339.464 | 1332.801 | 1330.677 |
| 1352.059 | 1337.705 | 1339.601 |
| 1359.768 | 1357.676 | 1358.271 |
| 1379.445 | 1364.07  | 1364.655 |
| 1387.205 | 1385.162 | 1374.785 |
| 1413.218 | 1405.698 | 1392.554 |
| 1416.768 | 1412.73  | 1401.869 |
| 1418.373 | 1416.445 | 1408.332 |
| 1419.45  | 1418.985 | 1417.502 |
| 1430.236 | 1419.821 | 1418.763 |
| 1436.023 | 1431.549 | 1422.948 |
| 1445.413 | 1446.357 | 1433.079 |
| 1476.206 | 1465.16  | 1444.987 |
| 1484.807 | 1470.136 | 1479.379 |
| 1485.411 | 1479.91  | 1484.401 |
| 1488.707 | 1485.123 | 1485.142 |
| 1490.559 | 1485.778 | 1485.812 |
| 1497.155 | 1488.647 | 1488.11  |
| 1502.438 | 1494.495 | 1493.936 |
| 1506.682 | 1502.551 | 1499.979 |
| 1516.675 | 1506.164 | 1501.469 |
| 1522.37  | 1506.624 | 1506.811 |
| 1534.87  | 1517.025 | 1509.808 |
| 1540.999 | 1523.626 | 1517.646 |
| 1546.837 | 1538.304 | 1522.963 |
| 1559.376 | 1540.665 | 1537.936 |

| 1578.869 | 1568.252 | 1541.461 |
|----------|----------|----------|
| 1585.644 | 1585.286 | 1552.429 |
| 1598.549 | 1589.168 | 1575.501 |
| 1621.84  | 1601.891 | 1585.867 |
| 1631.265 | 1621.204 | 1615.333 |
| 2924.227 | 2917.205 | 2916.786 |
| 2934.449 | 2936.379 | 2934.219 |
| 2947.808 | 2947.02  | 2948.208 |
| 2950.443 | 2949.732 | 2951.777 |
| 2964.269 | 2966.906 | 2960.358 |
| 2992.782 | 2994.911 | 2993.399 |
| 2995.805 | 2995.967 | 2996.971 |
| 3000.461 | 3000.229 | 2999.718 |
| 3001.404 | 3003.23  | 3002.359 |
| 3035.092 | 3032.54  | 3035.076 |
| 3038.801 | 3036.558 | 3035.944 |
| 3078.416 | 3084.471 | 3075.863 |
| 3094.267 | 3097.531 | 3092.149 |
| 3098.517 | 3098.659 | 3094.433 |
| 3098.97  | 3099.881 | 3095.387 |
| 3100.717 | 3100.388 | 3100.831 |
| 3101.321 | 3105.219 | 3102.195 |
| 3108.674 | 3108.591 | 3112.23  |
| 3110.974 | 3113.001 | 3112.524 |
| 3113.304 | 3114.775 | 3113.694 |
| 3116.032 | 3114.938 | 3115.145 |
| 3125.401 | 3118.268 | 3115.241 |
| 3129.591 | 3119.672 | 3120.077 |
| 3130.625 | 3143.232 | 3131.973 |

Vibrational frequencies of complex 2 in cm<sup>-1</sup>:



| 28.727  | 29.01   |  |
|---------|---------|--|
| 43.411  | 41.68   |  |
| 51.646  | 50.073  |  |
| 55.091  | 53.779  |  |
| 59.683  | 55.927  |  |
| 66.806  | 65.449  |  |
| 85.904  | 80.447  |  |
| 92.482  | 84.632  |  |
| 94.91   | 87.151  |  |
| 99.792  | 94.083  |  |
| 115.213 | 110.225 |  |
| 136.996 | 129.552 |  |
| 143.151 | 137.896 |  |
| 150.186 | 147.616 |  |
| 163.091 | 157.304 |  |
| 177.194 | 173.19  |  |
| 180.904 | 174.837 |  |
| 182.949 | 181.908 |  |
| 189.627 | 183.5   |  |
| 207.49  | 205.691 |  |
| 222.126 | 216.557 |  |
| 236.877 | 224.853 |  |
| 260.409 | 250.545 |  |
| 261.815 | 261.634 |  |
| 274.107 | 273.996 |  |
| 279.77  | 281.878 |  |
| 293.822 | 293.541 |  |
| 299.67  | 299.631 |  |
| 309.385 | 301.836 |  |
| 317.899 | 311.738 |  |
| 325.485 | 319.52  |  |
| 363.538 | 355.47  |  |
| 368.922 | 362.192 |  |
|         |         |  |

| 374.098 | 370.841 |
|---------|---------|
| 397.99  | 393.571 |
| 406.705 | 399.907 |
| 434.347 | 429.252 |
| 436.013 | 436.427 |
| 439.419 | 439.127 |
| 442.991 | 442.205 |
| 463.141 | 453.709 |
| 488.598 | 465.762 |
| 502.663 | 479.896 |
| 527.941 | 506.617 |
| 544.593 | 530.825 |
| 564.184 | 546.152 |
| 583.15  | 568.368 |
| 589.617 | 574.917 |
| 599.901 | 583.117 |
| 607.823 | 598.689 |
| 616.786 | 612.439 |
| 624.352 | 620.796 |
| 630.355 | 622.291 |
| 647.824 | 637.015 |
| 660.294 | 644.997 |
| 662.776 | 648.841 |
| 681.542 | 684.475 |
| 689.151 | 687.257 |
| 690.307 | 689.652 |
| 713.872 | 692.489 |
| 738.589 | 731.085 |
| 763.052 | 747.417 |
| 769.774 | 748.286 |
| 786.643 | 761.508 |
| 827.066 | 779.068 |
|         |         |

| 835.638  | 827.764  |
|----------|----------|
| 836.075  | 833.761  |
| 858.811  | 846.018  |
| 863.529  | 857.008  |
| 881.767  | 867.698  |
| 884.669  | 876.59   |
| 900.769  | 884.623  |
| 913.925  | 911.201  |
| 940.743  | 940.154  |
| 947.848  | 948.411  |
| 950.068  | 949.243  |
| 969.039  | 963.143  |
| 983.247  | 982.429  |
| 992.257  | 992.678  |
| 1000.811 | 999.886  |
| 1005.429 | 1006.282 |
| 1019.505 | 1023.116 |
| 1021.926 | 1028.83  |
| 1040.247 | 1036.605 |
| 1041.7   | 1037.969 |
| 1057.336 | 1049.819 |
| 1062.613 | 1057.131 |
| 1063.62  | 1062.89  |
| 1078.459 | 1063.44  |
| 1093.724 | 1078.273 |
| 1103.938 | 1095.258 |
| 1129.396 | 1103.3   |
| 1133.701 | 1128.954 |
| 1169.122 | 1132.755 |
| 1172.705 | 1155.064 |
| 1186.105 | 1168.028 |
| 1191.213 | 1179.39  |
| 1206.733 | 1188.159 |
|          |          |

| 1215.628 | 1232.366 |
|----------|----------|
| 1232.312 | 1244.68  |
| 1248.094 | 1261.817 |
| 1263.184 | 1263.454 |
| 1267.38  | 1264.463 |
| 1268.623 | 1268.297 |
| 1287.781 | 1281.164 |
| 1309.881 | 1297.109 |
| 1325.591 | 1304.29  |
| 1334.895 | 1329.666 |
| 1338.628 | 1333.837 |
| 1367.742 | 1352.176 |
| 1373.166 | 1367.813 |
| 1390.517 | 1390.012 |
| 1407.36  | 1414.122 |
| 1415.081 | 1416.201 |
| 1417.886 | 1417.725 |
| 1420.279 | 1420.195 |
| 1431.817 | 1428.535 |
| 1445.809 | 1433.124 |
| 1464.471 | 1452.918 |
| 1483.787 | 1470.042 |
| 1483.919 | 1483.884 |
| 1485.054 | 1485.27  |
| 1488.175 | 1488.268 |
| 1492.177 | 1488.397 |
| 1498.687 | 1494.886 |
| 1502.352 | 1497.912 |
| 1506.871 | 1502.547 |
| 1517.263 | 1506.305 |
| 1530.722 | 1516.897 |
| 1539.59  | 1529.027 |
| 1545.675 | 1538.797 |
|          |          |

| 1553.106 | 1541.902 |
|----------|----------|
| 1579.406 | 1571.599 |
| 1584.533 | 1581.433 |
| 1618.501 | 1588.098 |
| 1630.975 | 1624.038 |
| 2926.225 | 2922.066 |
| 2939.266 | 2939.505 |
| 2945.788 | 2945.676 |
| 2946.16  | 2946.313 |
| 2966.284 | 2964.61  |
| 2993.404 | 2993.772 |
| 2994.653 | 2994.598 |
| 2999.616 | 3000.096 |
| 3004.236 | 3004.155 |
| 3032.327 | 3031.973 |
| 3038.151 | 3037.386 |
| 3094.422 | 3096.12  |
| 3097.171 | 3096.784 |
| 3097.942 | 3100.973 |
| 3102.152 | 3101.337 |
| 3105.341 | 3104.429 |
| 3112.365 | 3113.011 |
| 3115.17  | 3113.928 |
| 3118.476 | 3117.323 |
| 3121.255 | 3118.633 |
| 3127.336 | 3119.624 |
| 3128.061 | 3125.408 |
|          |          |

# 4. <u>Displacement vectors:</u>

Displacement vector for complex  $\mathbf{1}$  in  $(a_0 \text{ amu}^{1/2})$ :

| $S_1 \rightarrow T_1$ | $S_1 \rightarrow T_2$ |
|-----------------------|-----------------------|
| -0.65587              | -3.25E-03             |
| -1.00837              | 1.329374              |

| -0.18929             | 0.94615              |
|----------------------|----------------------|
| 0.465875             | -1.5519              |
| 0.123625             | -0.31583             |
| 8.15E-02             | 0.194338             |
| 8.97E-02             | 0.464669             |
| 0.976859             | 1.173596             |
| 0.536275             | 0.245765             |
| -0.14402             | -7.20E-02            |
| 0 389121             | -0 58939             |
| -2.11E-02            | -0.25327             |
| 0 207474             | -0.17271             |
| -0 7867              | 0.172342             |
| 4.66E-02             | 0.267956             |
| -0.65718             | -0.31086             |
| -0.03718<br>3.05E.02 | -0.31080<br>4 57E 02 |
| -3.951-02            | 4.57E-02             |
| 0.203279<br>4.57E-02 | -0.13300             |
| 4.37E-02             | -0.14/4              |
| 0.309832             | 9.09E-02             |
| -0.12576             | -5.65E-02            |
| -9.23E-02            | -2.45E-04            |
| 0.135303             | -0.11409             |
| -0.13269             | 0.112115             |
| 0.166332             | 6.79E-02             |
| -3.38E-02            | -4.60E-03            |
| 3.18E-02             | 5.44E-03             |
| 2.61E-03             | 1.71E-03             |
| -0.2432              | 1.73E-02             |
| -0.27733             | -1.82E-02            |
| -0.23677             | 8.97E-02             |
| -8.63E-02            | -3.97E-02            |
| 9.41E-02             | -1.99E-03            |
| 9.37E-02             | -6.82E-03            |
| -1.61E-02            | -1.52E-02            |
| 7.23E-04             | -2.60E-02            |
| -2.46E-04            | 6.85E-02             |
| 2.69E-02             | 3.31E-02             |
| -4.07E-02            | 1.43E-03             |
| 4.31E-02             | 1.33E-02             |
| -8.63E-02            | -8.69E-03            |
| 4.86E-02             | 7.69E-03             |
| 1.06E-02             | 1.20E-02             |
| 1.14E-02             | 5.27E-03             |
| 3.32E-02             | -2.35E-02            |
| 2.71E-02             | 1.19E-02             |
| -6.16E-03            | 4.37E-02             |
| -2.08E-04            | 6.25E-04             |

| -3.41E-02 | 2.18E-02  |
|-----------|-----------|
| -2.57E-02 | 7.60E-03  |
| 4.24E-02  | -3.59E-02 |
| 6.38E-02  | 3.79E-02  |
| -5.41E-04 | -5.85E-03 |
| 3.04E-02  | -3.09E-02 |
| -0.11212  | -0.15102  |
| -8.12E-02 | 6.02E-02  |
| -7.24E-03 | -4.41E-02 |
| 2.73E-04  | 1.18E-03  |
| 5.04E-02  | 2.30E-02  |
| 0.114712  | -5.22E-02 |
| -1.38E-02 | -1.68E-02 |
| 8.86E-03  | 7.85E-03  |
| -6.56E-02 | -4.77E-02 |
| -6.54E-03 | -1.97E-03 |
| 5.87E-02  | -8.50E-02 |
| 6.14E-04  | -9.24E-04 |
| -2.78E-02 | -1.72E-02 |
| 3.22E-02  | 8.35E-02  |
| -2.39E-03 | -6.92E-03 |
| 1.81E-03  | -1.16E-03 |
| 1.14E-02  | 2.72E-02  |
| -1.03E-02 | -6.02E-03 |
| -1.11E-02 | -6.74E-03 |
| 1.91E-03  | -2.18E-03 |
| -3.67E-03 | 5.47E-04  |
| 9.91E-03  | -1.64E-03 |
| -3.47E-02 | 7.50E-03  |
| 4.42E-03  | -1.52E-02 |
| -8.39E-02 | -3.87E-02 |
| -1.39E-02 | -5.73E-03 |
| 1.48E-03  | -3.03E-04 |
| 2.83E-05  | 3.02E-03  |
| -3.03E-02 | -4.66E-02 |
| -8.48E-03 | -1.89E-02 |
| -1.11E-02 | -8.87E-04 |
| -4.65E-03 | 2.60E-02  |
| -7.06E-03 | -5.17E-03 |
| 4.63E-02  | 1.02E-02  |
| -1.16E-02 | 6.47E-03  |
| 1.36E-03  | -6.95E-03 |
| -1.74E-03 | 1.14E-02  |
| -7.28E-03 | 2.88E-03  |
| 1.21E-03  | -7.42E-04 |
| -4.52E-04 | -4.65E-04 |
|           |           |

| 4.77E-02             | 1.90E-02                  |
|----------------------|---------------------------|
| 4.03E-02             | 9.84E-03                  |
| -1.39E-02            | -1.16E-02                 |
| -7.62E-03            | -2.03E-02                 |
| -6.96E-02            | -1.96E-02                 |
| 8.23E-03             | -2.21E-02                 |
| -3.28E-02            | -3.53E-02                 |
| 4.26E-02             | 4.57E-02                  |
| -5.62E-02            | 6 29E-04                  |
| 8.75E-03             | -4.10E-03                 |
| -1.85E-02            | -2.97E-02                 |
| 2 58E-02             | 5.68E-03                  |
| 1.23E-02             | -1 23E-02                 |
| -1.08E-03            | $1.25 \pm 02$<br>1 31E-02 |
| -1.08E-03            | 7.76E.03                  |
| -1.95E-02            | 1.70E-03                  |
| 0.140991<br>0.61E 02 | -1.29E-02                 |
| -9.01E-03            | 1.10E-02                  |
| 3.1/E-02             | 2.05E-02                  |
| -2.08E-02            | -2.70E-02                 |
| -2.22E-02            | -2.21E-02                 |
| 6.30E-02             | 5.82E-02                  |
| 3.69E-02             | -3.56E-04                 |
| -3.19E-02            | -4.64E-02                 |
| 1.91E-02             | -1.95E-02                 |
| -1.86E-02            | 6.57E-02                  |
| -3.05E-02            | 6.22E-02                  |
| 2.25E-02             | -3.92E-02                 |
| 1.49E-02             | -2.10E-02                 |
| -2.91E-02            | -1.60E-02                 |
| -2.28E-02            | 3.24E-03                  |
| -3.67E-02            | -1.84E-02                 |
| -0.15542             | -7.28E-02                 |
| 9.03E-06             | -1.03E-04                 |
| -4.87E-04            | -4.18E-04                 |
| 3.24E-03             | 6.77E-03                  |
| -2.24E-02            | -4.25E-03                 |
| 3.48E-03             | 3.71E-05                  |
| 5.85E-03             | -7.47E-03                 |
| 2.04E-03             | 6.71E-04                  |
| 1.82E-02             | 1.32E-02                  |
| 3.11E-02             | 8.15E-03                  |
| -2.58E-02            | -3.70E-02                 |
| -4.40E-03            | 3.57E-03                  |
| 7.09E-02             | 2.56E-02                  |
| 3.91E-02             | -2.85E-02                 |
| 4.21E-02             | -1.64E-03                 |

| 1.95E-02  | 1.00E-02  |
|-----------|-----------|
| 0.181982  | 1.75E-03  |
| 1.22E-02  | 3.07E-02  |
| -4.83E-02 | -4.98E-02 |
| 2.29E-04  | -1.84E-03 |
| -7.92E-04 | -2.65E-03 |
| 1.41E-04  | -6.32E-04 |
| 3.27E-04  | -3.44E-04 |
| 4.40E-04  | 1.45E-03  |
| 1.65E-04  | 8.38E-04  |
| -5.04E-05 | 8.36E-05  |
| 3.17E-05  | 1.29E-05  |
| -1.96E-04 | -7.57E-04 |
| 9.45E-05  | -4.33E-05 |
| 1.96E-04  | -2.22E-04 |
| 7.43E-04  | 1.13E-03  |
| 1.30E-04  | -1.50E-03 |
| -8.57E-04 | 4.56E-04  |
| -2.68E-03 | -1.19E-03 |
| 1.91E-04  | -1.65E-03 |
| -1.99E-03 | -1.39E-03 |
| -1.41E-03 | -9.30E-04 |
| 5.31E-04  | -3.57E-04 |
| -3.91E-03 | -5.12E-03 |
| 3.85E-03  | 4.86E-03  |
| 9.90E-04  | 2.47E-03  |
| -6.09E-04 | -4.74E-04 |
| 3.95E-03  | 2.06E-03  |

Displacement vector for complex **2** in  $(a_0 \text{ amu}^{1/2})$ :

| $S_1 \rightarrow T_1$ |
|-----------------------|
| 0.410432              |
| 0.40772               |
| 1.89E-02              |
| 0.158287              |
| -0.118                |
| 0.125535              |
| -0.29066              |
| 0.202405              |
| -1.103                |
| -0.10754              |
| 0.18761               |
| -0.18389              |

| 0 217589      |
|---------------|
| 0 19713       |
| 0.17713       |
| -9.91E-02     |
| -0.17722      |
| -2.96E-02     |
| -1.96E-03     |
| 6.97E-02      |
| -9.28E-02     |
| -2.56E-02     |
| 4.62E-02      |
| 1.27E-02      |
| -3.95F-03     |
| 6.54E.02      |
| 0.34E-02      |
| 0.199241      |
| -1.43E-03     |
| -4.47E-03     |
| -6.12E-02     |
| 0.232501      |
| -7.40E-02     |
| -0.15823      |
| -3.44E-02     |
| 5 91E-02      |
| 8 15E 02      |
| 6.13E-02      |
| -5.85E-02     |
| 4.67E-03      |
| -3.68E-02     |
| 1.80E-02      |
| -5.80E-03     |
| 3.92E-03      |
| -1.76E-02     |
| 2.12E-02      |
| -5.31E-02     |
| $2.41E_{-}02$ |
| 2.41E 02      |
| 0.06E-02      |
| -3.54E-04     |
| -2.20E-02     |
| -3.29E-02     |
| 2.18E-02      |
| 1.82E-02      |
| -2.17E-03     |
| -3.56E-02     |
| 1.46E-02      |
| -5 80F-03     |
| 0.132614      |
| 1.025.02      |
| -1.93E-02     |
| -1.67E-02     |

| 4.66E-04             |
|----------------------|
| 8.41E-02             |
| 1.69E-02             |
| 6.95E-02             |
| 6.56E-03             |
| -4 64E-02            |
| $2.51E_{-0.04}$      |
| 2.31E-04<br>1.85E 02 |
| 1.03E-02             |
| -2.23E-02            |
| -3.04E-02            |
| -1.48E-02            |
| -1.05E-02            |
| -6.35E-03            |
| -6.02E-04            |
| 2.53E-02             |
| 6.33E-04             |
| 1.07E-03             |
| 3.61E-03             |
| 2.01E-03             |
| -2.32E-02            |
| 6.69E-04             |
| -1.02E-02            |
| 2.21E-03             |
| -1.45E-02            |
| -3.25E-03            |
| -2.69E-03            |
| -3.77E-03            |
| -8.29E-03            |
| -4 29E-04            |
| 2.95E-03             |
| 2.75E-05             |
| -3.74E-04            |
| 3.24E-04             |
| 3.93E-02             |
| -2.53E-02            |
| 2.65E-02             |
| -3.11E-02            |
| 7.48E-02             |
| -9.48E-03            |
| 0.10011              |
| -7.90E-03            |
| -1.44E-02            |
| -1.91E-03            |
| 8.17E-05             |
| -1.35E-02            |
| -1.76E-03            |
| -7.19E-02            |

| 1 515 00  |
|-----------|
| -1.51E-02 |
| 7.46E-02  |
| -2 62E-02 |
| 2.02E 02  |
| -/.19E-02 |
| -2.31E-02 |
| -4.26E-03 |
| 1.86E 02  |
| 1.00E-02  |
| 1.74E-02  |
| 1.39E-02  |
| -5.55E-02 |
| -1.82E-02 |
| -4.06E-03 |
| -2.95E-03 |
| -2.75E-03 |
| 3./3E-03  |
| 2.42E-02  |
| -3.81E-02 |
| 2.99E-02  |
| 1.61E-03  |
| 1.01E 03  |
| 1./4E-03  |
| -2.98E-02 |
| -0.13441  |
| -3.24E-02 |
| -8 42E-04 |
| 1.64E.02  |
| 1.04E-03  |
| 3.61E-02  |
| -2.55E-02 |
| 1.11E-03  |
| 9.87E-02  |
| 4.84E-02  |
| -2 70E-03 |
| -2.70L-03 |
| -1.04E-02 |
| 6.32E-02  |
| -4.82E-02 |
| 8.61E-05  |
| -2.04E-04 |
| 1 87E-04  |
| 7 77E 05  |
| -7.77E-05 |
| 1.09E-05  |
| 3.16E-05  |
| -2.28E-05 |
| 1.19E-04  |
| -1.51E-05 |
| 2.52E-05  |
| _1 18F 04 |
| -1.10L-04 |
| -3.05E-03 |
| -4.91E-05 |

| -6.53E-04 |  |
|-----------|--|
| -1.13E-03 |  |
| -1.46E-04 |  |
| 3.16E-03  |  |
| -3.27E-03 |  |
| 1.90E-03  |  |
| -1.37E-03 |  |
| -8.42E-04 |  |
| 1.86E-03  |  |

#### 5. <u>Reference:</u>

1. M. Z. Shafikov, D. N. Kozhevnikov, M. B. F. Brandl and R. Czerwieniec, *Inorg. Chem.*, 2016, 55, 7457–7466.