Supporting Information (SI)

Table S1. Standard dissolution potential for pure metals (U_{diss}) and reaction free energies corresponding to equation (7), (8), and (9) of the paper. n is the number of electrons transferred in the reaction, Positive values in bold are corresponding to the TM-BH systems that are stable against dissolution at pH=0. pH_{min} is the minimum pH value for Gibbs free energy of eq (7) (ΔG_{diss}) is zero. Maximum and minimum pH values are set as 16.0 and -2.0, respectively, beyond which the values are unrealistic.

TM	U _{diss} (V) ¹	n	ΔG_a	$\Delta G_b = nU_{diss}$	ΔG_{diss} at	pH _{min}
			(eV)	(eV)	pH=0	
Sc	-2.08	3	2.99	-6.24	-3.25	>16.0
Ti	-1.63	2	2.28	-3.26	-0.98	8.33
V	-1.18	2	1.28	-2.36	-1.08	9.14
Cr	-0.91	2	0.84	-1.82	-0.98	8.25
Mn	-1.18	2	0.99	-2.36	-1.37	11.61
Fe	-0.45	2	0.83	-0.90	-0.07	0.63
Со	-0.28	2	0.89	-0.56	0.33	-2.80
Ni	-0.26	2	0.86	-0.52	0.34	-2.88
Cu	0.34	2	0.37	0.68	1.05	-8.84
Y	-2.37	3	3.23	-7.11	-3.88	>16.0
Zr	-1.45	4	11.67	-5.80	5.87	<-2.0
Nb	-1.10	3	4.26	-3.30	0.96	<-2.0
Ru	0.46	2	0.35	0.92	1.27	<-2.0
Rh	0.60	2	0.43	1.20	1.63	<-2.0
Pd	0.95	2	0.08	1.90	1.98	<-2.0
Ag	0.80	1	-0.72	0.80	0.08	-1.40
$\mathbf{H}\mathbf{f}$	-1.55	4	4.27	-6.20	-1.93	8.16
Та	-0.60	3	0.28	-1.80	-1.52	8.54
W	0.10	3	-0.81	0.30	-0.51	2.85
Re	0.30	3	-0.89	0.90	0.01	-0.08
Ir	1.16	3	-0.24	3.48	3.24	<-2.0
Pt	1.18	2	-0.18	2.36	2.18	<-2.0
Au	1.50	3	-1.50	4.50	3.00	<-2.0

Table S2. The bond lengths of a transition metal with boron along the zigzag direction (d_{TM-B1}) and perpendicular to the zigzag direction (d_{TM-B2}) of all the considered transition metal-doped borophane (TM-BH). E_b denotes the binding energy, δq represent the Bader charge on transition metal atom and μ is the magnetic moment associated with the TM-BH system.

System	d _{TM-B1} (Å)	$\mathbf{d}_{\mathrm{TM-B2}}(\mathrm{\AA}) \qquad E_{\mathrm{b}}(\mathrm{eV})$		δq (e)	μ
	• 10				
Sc-BH	2.48	2.25	-2.37	1.67	0.44
Ti-BH	2.31	2.16	-1.96	1.32	0.00
V-BH	2.25	2.10	-1.42	0.26	1.36
Cr-BH	2.19	2.04	-1.01	-0.21	2.04
Mn-BH	2.20	2.07	-1.11	0.68	3.44
Fe-BH	2.14	1.99	-1.01	-1.42	2.12
Co-BH	2.13	2.01	-1.08	-0.76	1.63
Ni-BH	2.12	1.99	-1.05	-0.32	0.00
Cu-BH	2.09	2.02	-0.56	-0.88	0.00
Y-BH	2.66	2.39	-2.05	1.73	0.28
Zr-BH	2.47	2.30	-1.71	2.19	0.00
Nb-BH	2.37	2.23	-0.82	0.99	1.02
Ru-BH	2.20	2.06	-0.54	-0.34	0.00
Rh-BH	2.19	2.07	-0.62	-1.08	0.00
Pd-BH	2.24	2.12	-0.26	-0.07	0.00
Ag-BH	2.87	2.40	0.60	0.48	0.00
Hf-BH	2.43	2.26	-1.56	0.89	0.00
Ta-BH	2.36	2.22	-0.59	0.68	1.01
W-BH	2.26	2.13	0.47	-1.81	0.00
Re-BH	2.21	2.10	0.55	0.18	0.00
Os-BH	2.20	2.08	-0.09	-2.65	0.00
Ir-BH	2.19	2.08	-0.11	-1.54	0.00
Pt-BH	2.23	2.09	0.00	-1.88	0.00
Au-BH	2.33	2.16	1.18	-1.18	0.00

Figure S1. Optimized structure of reaction intermediates (OOH, O, OH) and H on the surface of pristine borophane.

Catalytic Inertness of Pristine Borophane

In order to test the catalytic inertness of the surface of borophane (BH) towards ORR/OER, we perform full structural relaxation by keeping reaction intermediates close to the surface of BH. As can be seen from Figure S1., ORR/OER reaction intermediates including H atom doesn't bind covalently to the surface of BH. Adsorption energies presented in Table S3., of all the intermediates, are calculated using the following relations,^{2,3}

$$\Delta E_{*00H} = E_{*00H} - E(*) - \left[2 E_{H_20} - \frac{3}{2} E_{H_2}\right]$$
(1)

$$\Delta E_{*0} = E_{*0} - E(*) - \left[E_{H_20} - E_{H_2}\right]$$
(2)

$$\Delta E_{*OH} = E_{*OH} - E(*) - \left[E_{H_2O} - \frac{1}{2}E_{H_2}\right]$$
(3)

and,
$$\Delta E_{*H} = E_{*H} - E(*) - \frac{1}{2}H_2$$
 (4)

Figure S2. The partial density of states (PDOS) of Mn-, Fe-, Co-, Ni-, Cu-, Rh-, Ru- and Pd-BH systems. The vertical dashed lines correspond to the Fermi level which is rescaled to zero. Black and blue lines represent the d-orbital of transition metal and p-orbital of boron atom, respectively.

Table S3. Binding energies (eV) of ORR/OER reaction intermediates and H on pristine borophane.

ΔE _{*OOH}	4.74
ΔE_{*O}	4.85
ΔE_{*OH}	2.54
ΔE_{*H}	2.23

Two-electron (2e⁻) reduction mechanism on TM-BH systems

The ORR process sometimes proceeds via a 2e reduction pathway, where the second hydrogen adsorbs on the un-hydrogenated O site of *OOH, yielding a stable H₂O₂ molecule that leaves the surface of the catalyst, for example, see Figure 7 (g) of the paper. The 2e⁻ and 4e⁻ reduction pathways compete with each other depending upon on the Gibbs free-energy change in the second protonation step to form either *O with a molecule of water (ΔG_2) or H₂O₂ ($\Delta G_5 = ({}^{G_{*H_2O_2} - G(*) - G(H_2O_2)})$). On comparing free energy changes during second protonation step, we found ΔG_2 much larger than ΔG_5 in almost all the TM-

BH systems as shown in Table S4. which thermodynamically support *O formation and discard 2e-

process over 4e⁻ reduction pathway.

Table S4. Gibbs free-energy change (ΔG , eV) values of all the ORR intermediate steps on selected transition metal-doped borophane (TM-BH) at U=0 V. η^{ORR} and η^{OER} are the ORR and OER overpotentials associated with respective systems (in volts).

System	ΔG_1	ΔG_2	ΔG_3	ΔG_4	ΔG_5	η^{ORR}	η^{OER}
Cr-BH	1.63	3.00	0.06	0.23	0.27	1.17	1.77
Mn-BH	1.33	2.32	0.67	0.60	0.14	0.63	1.09
Fe-BH	1.17	1.78	1.18	0.80	0.4	0.43	0.55
Co-BH	0.58	1.60	1.20	1.54	0.32	0.65	0.37
Ni-BH	0.23	1.26	1.46	1.97	0.34	1.00	0.74
Cu-BH	0.26	0.89	1.84	1.93	0.31	0.97	0.70
Ru-BH	0.76	2.25	0.59	1.32	0.32	0.64	1.02
Rh-BH	0.76	1.37	1.47	1.32	0.26	0.47	0.24
Ag-BH	0.57	0.59	2.21	1.55	0.16	0.66	0.98

References

- 1 J. Greeley and J. K. Nørskov, Electrochemical dissolution of surface alloys in acids: Thermodynamic trends from first-principles calculations, *Electrochim. Acta*, 2007, **52**, 5829–5836.
- 2 V. Viswanathan, H. A. Hansen, J. Rossmeisl and J. K. Nørskov, Universality in Oxygen Reduction Electrocatalysis on Metal Surfaces, *ACS Catal.*, 2012, **2**, 1654–1660.
- 3 I. C. I. I. C. Man, H.-Y. Y. H. Su, F. Calle-Vallejo, H. A. Hansen, J. I. Martínez, N. G. Inoglu, J. Kitchin, T. F. Jaramillo, J. K. Nørskov, J. Rossmeisl, F. Calle-Vallejo, F. Calle-Vallejo, H. A. Hansen, J. I. Martínez, N. G. Inoglu, J. Kitchin, T. F. Jaramillo, J. K. Nørskov and J. Rossmeisl, Universality in Oxygen Evolution Electrocatalysis on Oxide Surfaces, *ChemCatChem*, 2011, 3, 1159–1165.