Twin and dislocation mechanisms in tensile W single crystal with temperature change: A molecular dynamics study Supplementary Materials

Ya-Xin Feng¹, Jia-Xiang Shang^{†,1}, Sheng-Jian Qin¹, Guang-Hong Lu^{2,3}, Yue Chen^{†,4}

¹ School of Materials Science and Engineering, Beihang University, Beijing 100191, China

² School of Physics and Nuclear Engineering, Beihang University, Beijing 100191, China

³ Beijing Key Laboratory of Advanced Nuclear Materials and Physics, Beihang University, Beijing 100191, China

⁴ Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China

1. Model parameters

Supplementary Table 1: Parameters of the present potential, in comparison with those form experiment, density-functional theory (DFT) calculations, the modified embedded atom method (MEAM) potential and the bond-order potential (BOP). a: the lattice constant (Å); E_c : cohesive energy (eV/atom); E_f : formation energy (eV); v: vacancy: SIA: self-interstitial atom; tet: tetrahedral interstitial; oct: octahedral interstitial; $db\langle ijk \rangle$: $\langle ijk \rangle$ dumbbell interstitial configuration.

	present	DFT	Experimental	BOP	$MEAM^k$	
a	3.165	3.18^{c}	3.165^{d}	$3.165^{h,i}$	3.164	
E_c	-8.90	-7.406^{i}	-8.90^{e}	$-8.906^{h}, -8.89^{i}$	-8.66	
$E_{f,v}$	3.63	$3.46^a, 3.56^b$	3.7 ± 0.2^{f}	$3.52^h, 1.68^i$	3.95	
$E_{f,tet}^{SIA}$	10.31	$11.64^a, 11.05^b$		10.75^{h}		
$E_{f,oct}^{SIA}$	10.41	$11.99^a, 11.68^b$		12.05^{h}		
$E_{f,db\langle 100\rangle}^{SIA}$	10.29	$11.74^a, 11.49^b$		12.01^{h}		
$E_{f,db\langle 110\rangle}^{SIA}$	10.18	$10.10^a, 9.84^b$		9.53^{h}	8.98	
$E_{f,db\langle 111\rangle}^{SIA}$	9.51	$9.82^a, 9.55^b$	9.06 ± 0.63^g	9.33^{h}		

 $a \operatorname{Ref.}[1]$

 $b \operatorname{Ref.}[2]$

c Ref.[3]

 $d \operatorname{Ref.}[4]$

 $e \operatorname{Ref.}[5]$

f Ref.[6]

 $g \operatorname{Ref.}[7]$

 $h \operatorname{Ref.}[8]$

 $i \operatorname{Ref.}[9]$

 $k \operatorname{Ref.}[10]$

	х		Z	Dimensions	
Angle from [001]		У	(tensile direction)	$(x \times y \times z)$	No. of W atoms
0	100	010	001	$12.7\times12.7\times12.7$	128,000
5.1	$1\overline{1}0$	$88\overline{1}$	$1,\!1,\!16$	$9.0\times14.4\times15.2$	123,840
10.0	$1\overline{1}0$	$44\overline{1}$	118	$9.0\times10.9\times15.4$	95,040
15.8	$1\overline{1}0$	$55\overline{2}$	115	$9.0\times11.6\times16.4$	108,000
19.5	$1\overline{1}0$	$22\overline{1}$	114	$9.0\times11.4\times16.1$	103,680
25.2	$1\overline{1}0$	$33\overline{2}$	113	$9.0\times11.9\times16.8$	112,640
29.5	$1\overline{1}0$	$55\overline{4}$	225	$9.0\times12.9\times18.2$	132,000
35.3	$1\overline{1}0$	$11\overline{1}$	112	$9.0\times11.0\times15.5$	96,000
40.3	$1\overline{1}0$	$55\overline{6}$	335	$9.0\times11.7\times16.6$	110,080
46.7	$1\overline{1}0$	$22\overline{3}$	334	$9.0\times13.1\times18.5$	126,000
50.5	$1\overline{1}0$	$7, 7, \overline{12}$	667	$9.0\times14.8\times13.9$	116,160
54.7	$1\overline{1}0$	$11\overline{2}$	111	$9.0\times15.5\times11.0$	96,000
60.5	$1\overline{1}0$	$22\overline{5}$	554	$9.0\times10.9\times15.4$	95,040
64.8	$1\overline{1}0$	$11\overline{3}$	332	$9.0\times12.6\times17.8$	126,720
70.5	$1\overline{1}0$	$11\overline{4}$	221	$9.0\times13.4\times19.0$	144,000
76.7	$1\overline{1}0$	$11\overline{6}$	331	$9.0\times11.7\times16.6$	109,440
82.0	$1\overline{1}0$	$1, 1, \overline{10}$	551	$9.0\times16.0\times11.3$	102,000
86.3	$1\overline{1}0$	$1, 1, \overline{22}$	$11,\!11,\!1$	$9.0\times14.0\times14.8$	116,640
90	$\overline{1}10$	001	110	$13.4\times9.5\times13.4$	108,000
5.7	100	$0, 10, \overline{1}$	0,1,10	$9.5\times12.7\times12.7$	96,960
11.3	100	$05\overline{1}$	015	$9.5\times12.9\times12.9$	99,840
15.9	100	$07\overline{2}$	027	$9.5\times13.8\times13.8$	114,480
21.8	100	$05\overline{2}$	025	$9.5\times13.6\times13.6$	111,360
26.6	100	$02\overline{1}$	012	$9.5\times14.2\times14.2$	120,000
31.0	100	$05\overline{3}$	035	$9.5\times12.9\times12.9$	99,960
36.9	100	$04\overline{3}$	034	$9.5\times12.7\times12.7$	96,000
40.6	100	$07\overline{6}$	067	$9.5\times14.6\times14.6$	$127,\!500$
45	100	$01\overline{1}$	011	$9.5\times9.0\times9.0$	48,000
	$1\overline{1}2$	$7\overline{14}$	131	$11.6\times12.9\times15.7$	148,500
	$\overline{1}01$	$1\overline{1}1$	121	$9.0\times11.0\times15.5$	96,000
	$11\overline{2}$	$\overline{13}, 5, \overline{4}$	153	$11.6\times9.2\times18.7$	126,000
Additional	$1\overline{1}2$	$11, \overline{5}, \overline{8}$	351	$11.6\times9.2\times18.7$	126,000
orientations	$12\overline{3}$	$\overline{41}, 16, \overline{3}$	397	$11.8\times14.0\times14.9$	155,680
	$12\overline{3}$	$\overline{2}10$	365	$11.8\times10.6\times13.2$	105,000
	$10\overline{2}$	$\overline{2}2\overline{1}$	452	$8.5\times11.4\times17.0$	103,680
	$01\overline{3}$	$\overline{4}31$	562	$10.0\times12.9\times12.8$	104,000

Supplementary Table 2: Model parameters: angle from [001] (°), directions, dimensions (nm) and the number of W atoms.

antitwinning (121) (011) (110) twinning [112] twinning twinning $(21\overline{1})$ $(\bar{1}12)$ [011] $(10\overline{1})$. (101) $[1\overline{1}1]$ [001] (112) antitwinning [113] (211) antitwinning [121] antitwinning (110) $(0\overline{11})$ $[1\overline{1}1]$ [111] (<u>121</u>) twinning [101] (b) (a) [110] [111] antitwinning [001] [010] [011] [121] twinning [111] [110] (c)

2. Orientation divisions according to $[1\overline{1}1]$, $[\overline{1}11]$ and $[\overline{11}1]$ slip directions

Supplementary Figure 1: (Color online) (a) Schematic figure showing the twinning and antitwinning planes along the $[1\overline{1}1]$ slip direction; (b-c) Standard [001] and [010] stereographic projections for cubic crystals illustrating orientation division according to the $[1\overline{1}1]$ slip direction within the standard stereographic triangle.

Supplementary Figure 2: (Color online) (a) Schematic figure showing the twinning and antitwinning planes along the $[\bar{1}11]$ slip direction. (b-c) Standard [001] and [010] stereo-graphic projections for cubic crystals illustrating orientation division according to the $[\bar{1}11]$ slip direction within the standard stereographic triangle.

Supplementary Figure 3: (Color online) (a) Schematic figure showing the twinning and antitwinning planes along the $[\overline{111}]$ slip direction. (b-c) Standard [001] and [010] stereo-graphic projections for cubic crystals illustrating orientation division according to the $[\overline{111}]$ slip direction within the standard stereographic triangle.

Supplementary Figure 4: (Color online) Yield behaviors of bulk materials and nanowires with orientations of [001], [110], [111], [112], [221] and [012] at 10K. The atoms are coloured according to the centro-symmetry parameter (CSP)

To investigate the influence of different boundary conditions on the deformation mechanism of single crystal W, tensile tests on nanowires (boundary conditions: s s p along x y z) with orientations of [001], [110], [111], [112], [221] and [012] are simulated at 10 K and compared with their bulk counterparts. As shown in Supplementary Fig.4, it is found that the nanowire with [001] orientation yields by twinning, while the nanowires with orientations of [110], [111] and [221] yield by dislocation slip, which are consistent with their bulk counterparts (Supplementary Fig.4a-c and e). As for [112] and [012] orientations (Supplementary Fig.4d and f), they initially yield by unstable stable twin embryos and further deform through dislocation slip for bulk materials (like Fig.12a-b), while yield by both twin deformation and minor dislocation activities for nanowires (like Fig.12c-d), which all belong to the intermediate behaviors. According to the above comparison, we can find that different boundary conditions do not influence the deformation mechanism of single crystal W and our conclusions also apply to nanowires.

- C. Becquart, C. Domain, Ab initio calculations about intrinsic point defects and He in W, Nucl. Instrum. Methods Phys. Res. B 255 (2007) 23.
- [2] P.M. Derlet, D. Nguyen-Manh, S.L. Dudarev, Multiscale modeling of crowdion and vacancy defects in body-centered-cubic transition metals, Phys. Lett. B 76 (2007) 054107.
- [3] D. Nguyen-Manh, A.P. Horsfield, S.L. Dudarev, Self-interstitial atom defects in bcc transition metals: Group-specific trends, Phys. Lett. B 73 (2006) 020101.
- [4] CRC Handbook of Chemistry and Physics, eighty-fifth ed., CRC, Boca Raton, 2004.
- [5] C. Kittel, Introduction to Solid State Physics, seventh ed., Wiley, New York, 1996.
- [6] K.-D. Rasch, R.W. Siegel, H. Schultz, Quenching and recovery investigations of vacancies in tungsten, Philos. Mag. A 41 (1980) 91.
- [7] I.M. Neklyudov et al., Interstitial atoms in tungsten: Interaction with free surface and in situ determination of formation energy, Phys. Rev. B 78 (2008) 115418.
- [8] X.C. Li, X.L. Shu, Y.N. Liu, F. Gao, G.H. Lu, Modified analytical interatomic potential for a WCH system with defects, J. Nucl. Mater. 408 (2011) 12.
- [9] N. Juslin et al., Analytical interatomic potential for modeling nonequilibrium processes in the WCCCH system, J. Appl. Phys. 98 (2005) 123520
- [10] B.-J. Lee et al., Second nearest-neighbor modified embedded atom method potentials for bcc transition metals, Phys. Rev. B 64 (2001) 184102.