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S1 Wigner Phase-Space Sampling

The Wigner function can be used for phase-space sampling. This is, for example, nec-

essary in order to generate initial nuclear coordinates and momenta prior to perform

non-adiabatic molecular dynamics simulations. To this purpose, we can choose a ran-

dom pair of coordinates and momenta (pi, qi), calculate its (quasi-)probabilityW (pi, qi),

and compare it with a random number k from a uniform distribution of k ∈ [0, 1]. If

W (pi, qi) ≥ k, we accept the coordinates and momenta (pi, qi) for our sample while if

W (pi, qi) < k, we discard (pi, qi) and choose a new pair (pj , qj). If W (pi, qi) < 0, i.e.,

the Wigner function W has a negative value for (pi, qi), we always discard (pi, qi) in

line with the interpretation that coordinates for which W is negative are unaccessible

in experiment.1–3

The Wigner function is a functional of the wave function, i.e., W = W [Ψ], as is

evident from eq. (1) in the main paper. Similar to the problem of the unattainable

exact electronic wave function in electron-structure theory, also when sampling the

nuclear phase space of a molecule, one generally does not know the exact nuclear wave

function, calling for the use of some approximate description of the nuclear motion.

A common simple approximation is to describe the (non-linear) N -atomic molecule as

a system of 3N − 6 uncoupled one-dimensional harmonic oscillators.4 Then, by using

the product wave function Ψ(q) =
∏3N−6

i=1 ϕ(qi) composed of the eigenfunctions ϕ(qi)

of the one-dimensional harmonic oscillators of normal modes i, the Wigner function

factorizes as

W [Ψ](q,p) =

3N−6∏
i=1

W [ϕ(qi)](qi, pi) =

3N−6∏
i=1

Wi (1)

The eigenfunctions of the harmonic oscillator are known analytically and read for the

normal mode i in the vibrational state n

ϕn(qi) =
1√

2nn!

(µiωi

πh̄

)1/4
exp

(
−µiω

2
i q

2
i

2h̄

)
Hn

(√
µiωi

h̄
qi

)
(2)

S2



where ωi and µi are the frequencies and reduced masses, respectively, and Hn is the

n-th order Hermite polynomial. Thus, one only needs to calculate ωi and µi for the

uncoupled harmonic oscillators (normal modes) to obtain an expression for the Wigner

function W . More specifically, the Wigner functions of the harmonic oscillator read

Wi[ϕn](qi, pi) =
1

πh̄
(−1)n exp

(
−2Hi

h̄ωi

)
Ln

(
4Hi

h̄ωi

)
(3)

where Ln(x) is the n-th order Laguerre polynomial, and Hi = p2
i /2µi + 1/2µiω

2
i q

2
i is

the classical Hamiltonian of the harmonic oscillator. If one considers the uncoupled

harmonic oscillators to be in their ground state ϕ0(qi), the one-dimensional Wigner

functions Wi read simply

Wi[ϕ0](qi, pi) =
1

πh̄
exp

(
−p

2
i /µi + µiω

2
i q

2
i

h̄ωi

)
(4)

Restricting the system to always be in the ground state bears both advantage and

disadvantage. As is apparent Wi[ϕ0] ≥ 0 ∀ (qi, pi), i.e., the Wigner function is either

positive or zero for the system in the ground state, and one, thus, does not need to deal

with the situation of negative (quasi-)probabilities. However, restricting the system to

always be in the ground state corresponds to the hypothetical situation of the system

at zero temperature (T = 0 K). Certainly, a more realistic description of the system

taking into account finite temperature is desired.

Temperature may be defined as the thermodynamic quantity that, multiplied by

the Boltzmann constant kB, equals the energy per degree of freedom that is available to

promote the system from its ground to its excited states.5 Thus, temperature is not a

straight measure of the energy of a system; this situation only refers to the special case

where the energy of the ground state of the system equals zero. This case, however, is

not met when describing the vibrational motion of a molecule, where the ground state

is already at an elevated energy, the zero-point energy (ZPE). At finite temperature,
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both ground and excited vibrational states possess non-zero population.

The probability Pn(T )to populate the state n with energy En in a canonical en-

semble can be computed by a Boltzmann distribution

Pn(T ) =
exp

(
− En
kBT

)
∑

n exp
(
− En
kBT

) =
exp

(
− En
kBT

)
Z(T )

(5)

where Z(T ) is the canonical partition function. For the harmonic oscillator with energy

levels

En = h̄ω(n+ 1/2) where n = 0, 1, 2, . . . (6)

there exists a closed-form expression for Z(T ) reading

Z(T ) =
∞∑
n=0

exp

(
− h̄ω

kBT
(n+ 1/2)

)
=

exp
(
− h̄ω

2kBT

)
1− exp

(
− h̄ω
kBT

) (7)

The temperature-dependent energy of the harmonic oscillator in the canonical ensemble

is then given by

E(T ) =

∞∑
n=0

Pn(T )En =
h̄ω

2
+ h̄ω

exp
(
− h̄ω
kBT

)
1− exp

(
− h̄ω
kBT

) = ZPE + ε(T ) (8)

i.e., it is the sum of the temperature-independent ZPE and a thermal-energy contribu-

tion ε(T ). For h̄ω/kBT ≈ 0, a first-order Taylor expansion of the thermal energy yields

ε(T ) = kBT − h̄ω. Thus, in the high-temperature (or low-frequency) limit we find that

approximately

lim
kBT�h̄ω

E(T ) ≈ kBT (9)

Using the temperature-dependent probabilities Pn(T ) from eq. (5), we can now

perform FInite-Temperature WIgner Phase-Space (FITWIPS) sampling. In practice,

for phase-space sampling, for each normal mode i, we proceed as follows:
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1. We determine the probabilities to populate each vibrational state at a given

temperature using eq. (5).

2. Following these probabilites, we stochastically select a vibrational state, say ϕn,

which determines the Wigner function W [ϕn].

3. We then select random coordinates and momenta (qi, pi), and calculate the value

of the Wigner function corresponding to our chosen state, i.e., W [ϕn](qi, pi),

using eq. (3).

4. We compare W [ϕn](qi, pi) against a random number k ∈ [0, 1]. If W [ϕn](qi, pi) ≥

k, we accept (qi, pi) for our sample, otherwise we discard (qi, pi) and start again

at step 2.

We point out again that W [ϕn](qi, pi) can be negative for n ≥ 1, in which case we

always discard (qi, pi), as discussed above.

S2 Finite-Temperature Effects

Having introduced the concept of FITWIPS sampling in the previous section, in this

section we discuss for pedagogical purposes the effects that a finite temperature can

have in phase-space sampling of simple molecules. Specifically, we first compare the

ZPE and thermal-energy contributions to the total vibrational energy for a range of

molecules and motivate possible effects that the population of vibrationally excited

levels can have on the excited-state dynamics of molecules.

S2.1 ZPE and Thermal-Energy Contributions

For a normal mode with frequency ω, the probabilities Pn to populate ground and

excited states depend on the quotient ω/T [see eqs. (5) and (7)]. For high-frequency
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modes (ω � T ), the system will populate primarily the ground state, while for low-

frequency modes (ω � T ), the population will be spread over a number of states. We

show this exemplarily in Figure S1, where, e.g., for T = 300 K and ω = 1000 cm−1

all population is in the ground state. At the same temperature, for ω = 500 cm−1

already 8 % of the population is in the first excited state. And for ω = 100 cm−1, P0

is only 38 % and all states up to n = 7 have contributions of Pn > 1 %. At higher

temperatures, the population of the vibrationally excited states naturally grows. For

example, at T = 500 K, the population of all excited vibrational states sums up to∑
n≥1 Pn = 24 % and 75 % for ω = 500 cm−1 and 100 cm−1 , respectively.

Populations of Vibrational States
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Figure S1: Temperature-dependent population of the states of harmonic oscilla-
tors with different frequencies ω.

When we calculate the total energy in a vibrational mode according to eq. (8),

we will have different contributions of the (temperature-independent) ZPE and the

thermal-energy contribution that is due to the population of vibrationally excited

states. For a high-frequency mode, the thermal-energy contribution is very small as the

excited-state populations are negligible and the total energy is in a good approximation

given by the ZPE. In contrast, for a low-frequency mode, the situation is reversed and
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the thermal-energy contribution can be much larger than the ZPE (see Figure S2).

These cases are illustrated in Table S1, where the ZPE and thermal-energy contribu-

tions of all normal modes of formamide and ethene for a temperature of T = 300 K are

tabulated.

Table S1: Contribution of ZPE and thermal energy ε(T ) to the total energy E(T )
in cm−1 of the normal modes of formamide and ethene at T = 300 K. Normal
modes calculated at MP2/6-31G∗ level of theory using Gaussian09.6

Formamide Ethene
Mode ωi ZPEi εi(T ) Ei(T ) ωi ZPEi εi(T ) Ei(T )
ω1 132.08 66.04 149.38 215.42 845.58 422.79 14.90 437.69
ω2 564.96 282.48 40.28 322.76 938.04 469.02 10.54 479.56
ω3 649.30 324.65 30.17 354.82 992.50 496.25 8.57 504.82
ω4 1058.31 529.15 6.65 535.80 1089.30 544.65 5.89 550.54
ω5 1074.72 537.36 6.24 543.60 1266.11 633.05 2.92 635.98
ω6 1305.22 652.61 2.49 655.10 1412.52 706.26 1.61 707.87
ω7 1458.89 729.44 1.33 730.78 1522.56 761.28 1.02 762.30
ω8 1657.87 828.93 0.58 829.51 1726.75 863.37 0.43 863.81
ω9 1841.38 920.69 0.26 920.95 3238.21 1619.10 0.00 1619.10
ω10 3066.37 1533.18 0.00 1533.18 3256.05 1628.02 0.00 1628.02
ω11 3689.79 1844.89 0.00 1844.89 3332.88 1666.43 0.00 1666.44
ω12 3843.70 1921.85 0.00 1921.85 3356.10 1678.05 0.00 1678.05

Total 10171.29 237.43 10408.72 11488.30 45.93 11534.23
C [%] 97.72 2.28 100.00 99.60 0.40 100.00

E

ε(T)

ε(T)ZPE

ZPE

(a) High-Frequency Mode

ZPE � ε(T)

(b) Low-Frequency Mode

ZPE � ε(T)

Figure S2: Comparison of zero-point and thermal-energy contributions for high-
and low-frequency normal modes.

When looking at the lowest-frequency normal mode of formamide (ω1 = 132 cm−1 ),

we find that the thermal-energy contribution is much larger than the ZPE, i.e., ε1(T ) =
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2.2 ZPE1. In contrast, for the higher-frequency normal modes, ZPEi is always larger

than εi(T ), and εi(T ) < 1 % of the total energy for modes n ≥ 6. Considering all

normal modes of formamide, the ZPE and thermal contribution amount to 10171 and

237 cm−1 , respectively, corresponding to a percentage contribution of C = 97.7 %

and C = 2.3 % of the total vibrational energy. When we now compare the results of

formamide with the results for ethene –two molecules with the same number of atoms,

i.e., same number of normal modes –we see that the thermal-energy contribution is

much smaller for ethene (C = 0.4 %) than for formamide (C = 2.3 %). This is due

to the, in average, larger frequencies of the normal modes of ethene; especially, the

lowest-frequency normal mode ω1 = 845 cm−1 contributes only 15 cm−1 to the thermal

energy ε1(T = 300 K), while the lowest-frequency normal mode ω1 = 132 cm−1 of

formamide contributes ε1(T = 300 K) = 150 cm−1 –the ten-fold amount of ε(T ).

As the comparison of formamide and ethene has illustrated, the thermal-energy

contribution is unique for every molecule: it depends on the distribution of the normal-

mode frequencies of the system. If the system 1 possesses more low-frequency modes

than system 2, then its thermal-energy contribution to the total energy will be larger

than that of system 2, and, thus, inclusion of finite-temperature effects will be more

important for the description of system 1 than for system 2. Typically, one associates

high-frequency normal modes with very rigid internal movements of the molecule, i.e.,

when atoms in a molecule are bound by strong chemical bonds, the normal modes

describing the vibrations between these atoms possess rather high frequencies. In

contrast, normal modes describing the vibration of loosely-bound atoms –as found, e.g.,

in van-der-Waals clusters or systems exhibiting hydrogen bonding –possess rather low

frequencies. Additionally, low frequencies are found for torsional motion in molecules,

e.g., that of methyl groups in organic molecules. In terms of chemical structure, we

can, thus, propose that the less rigid is the structure of a molecule, the larger the

contribution of the thermal energy ε(T ) to the total energy E(T ) will be.

To awake awareness on the importance of the thermal energy, we now investi-
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gate its size for a sample of molecules, for instance using the Thiel’s benchmark set,7

which comprises 28 small and medium-sized organic chromophores (see Table S2). For

each molecule, we performed a geometry optimization and frequency calculation at the

second-order Møller-Plesset perturbation theory (MP2)8 using the 6-31G∗ basis set9

as implemented in the Gaussian09 program package.6 As input geometries, we em-

ployed the MP2/6-31G∗-optimized geometries reported in Ref. 7, which in the cases of

formamide, acetamide, propanamide, naphthalene, adenine, and cytosine represented

transition states, i.e., conformations with one imaginary-frequency normal mode. Re-

optimization of all molecules at this level of theory lead to energetic minima, with the

exception of naphthalene. For naphthalene, re-optimization consistently lead to a pla-

nar structure exhibiting one imaginary-frequency normal mode with ω = 238i cm−1 –at

the MP2/6-31G∗level of theory using Gaussian09 – and we, thus, excluded naphthalene

from our analysis. Note that this predicted nonplanarity appears to be a common prob-

lem for certain combinations of correlated electronic structure methods and basis sets

for arenes.10 For all other molecules, we present the ZPE, thermal-energy contribution

ε(T ), and total energy E(T ) for a temperature of T = 300 K in Table S2.

As can be seen in Table S2, the contribution of the thermal energy ε(T ) to the total

energy E(T ) ranges from 0.12 % (formaldehyde) to 4.26 % (thymine). As expected, we

find the largest thermal-energy contribution for the molecules with non-rigid structural

elements such as CH3 or NH2 groups, e.g., in nucleobases or amides. The molecules

in Thiel’s benchmark set either are cyclic or possess one or more double bonds which

hinders low-frequency motions such as torsion. Thus, these molecules possess rather

rigid structures, and the typical size of the thermal-energy contribution found here is

much smaller than the size of ε(T ) for other classes of molecules with more flexible

structure.
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Table S2: ZPE, thermal energy ε(T ), and total energy E(T ) in eV as well as
percentage of contributions C(ZPE) and C(ε) of the ZPE and thermal energy,
respectively, for the molecules contained in the Thiel benchmark set7 as well as
2-nitronaphthalene and Ru(bpy)2+

3 at a temperature of T = 300 K. Frequencies
calculated at MP2/6-31G∗ level of theory using Gaussian09.

Molecule ZPE ε(T ) E(T ) C(ZPE) C(ε)
Acetamide 2.054 0.063 2.117 97.01 2.98
Acetone 2.342 0.070 2.413 97.08 2.91
Adenine 3.089 0.121 3.210 96.23 3.76
Benzene 2.754 0.048 2.802 98.26 1.73
Benzoquinone 2.315 0.100 2.416 95.82 4.17
Butadiene 2.362 0.051 2.413 97.87 2.12
Cyclopentadiene 2.565 0.037 2.602 98.56 1.43
Cyclopropene 1.566 0.013 1.579 99.14 0.85
Cytosine 2.725 0.104 2.829 96.32 3.67
Ethene 1.424 0.005 1.430 99.60 0.39
Formaldehyde 0.745 0.001 0.746 99.87 0.12
Formamide 1.261 0.029 1.290 97.71 2.28
Furan 1.928 0.026 1.954 98.66 1.33
Hexatriene 3.284 0.110 3.394 96.75 3.24
Imidazole 1.966 0.026 1.992 98.67 1.32
Norbornadiene 3.571 0.054 3.625 98.49 1.50
Octatetraene 4.204 0.170 4.375 96.09 3.90
Propanamide 2.863 0.093 2.957 96.84 3.15
Pyrazine 2.120 0.038 2.158 98.23 1.76
Pyridazine 2.093 0.040 2.134 98.08 1.91
Pyridine 2.445 0.041 2.487 98.31 1.68
Pyrimidine 2.126 0.038 2.164 98.23 1.76
Pyrrole 2.277 0.033 2.310 98.53 1.46
Tetrazine 1.412 0.038 1.450 97.35 2.64
Thymine 3.180 0.141 3.321 95.73 4.26
Triazine 1.804 0.035 1.839 98.08 1.91
Uracil 2.398 0.095 2.494 96.17 3.82
2-Nitronaphthalene 4.075 0.177 4.253 95.82 4.18
Ru(bpy)2+

3 12.771 0.730 13.501 94.59 5.41
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S2.2 Potential Effects on Excited-State Dynamics

When one adds the thermal energy ε(T ) to the ZPE, the system naturally possesses

more vibrational energy. As can be seen in Table S1, this increase in energy can be up

to 0.2 eV for the small and medium-sized organic molecules in Thiel’s benchmark set

at a temperature of T = 300 K. The increase can become larger when one considers

larger systems with a larger number of low-frequency normal modes amounting to, e.g.,

ε(T = 300 K) = 0.7 eV for the metal complex Ru(bpy)2+
3 (recall Table S2).

Although an additional 0.1 eV (2.3 kcal/mol) vibrational energy may appear rather

small, already this amount of additional energy might have affect excited state dynam-

ics. As an illustration, consider a hypothetical system with two electronic states as in

Figure S3a: after excitation, the system could climb the potential-energy barrier and

undergo some further reaction or get trapped in the excited state minimum and relax

to the ground state via fluorescence. Using transition state theory one can estimate

a rate constant kR for the reaction in the excited state, where the potential energy

barrier ∆E serves as the activation energy EA

kR =
kBT

h
exp

(
− EA

kBT

)
(10)

For fluorescence, one typically11 finds room-temperature rates of kF = 106-109 s−1.

Thus, the excited-state reaction can compete with fluorescence if its rate constant kR

is similar or larger that that of fluorescence. Using kR = kF = 106-109 s−1 and eq. (10)

we find that the reaction occurs if its barrier is ∆E < 0.22-0.40 eV. Therefore, if

one includes the thermal-energy contribution ε(T ) in the description of the system,

this additional energy can significantly alter the kinetics of the reaction by effectively

reducing the required activation energy for the excited-state reaction EA. The rate of
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(a) Decreasing Excited-State Energy Barriers

R

E

∆E (T = 0)

∆E (T > 0)

(b) Conformational Opening of Reaction Channels

R

E

Figure S3: Potential scenarios for excited-state dynamics. (a) The additional
thermal energy available in the excited state affects the yield of two excited-state
reactions. (b) The larger conformational space that is sampled when including
thermal energy in Wigner sampling opens up a new excited-state reaction channel.
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the reaction is then increased by a factor of

k′R
kR

=
exp

(
−(EA−ε(T )

RT

)
exp

(
−EA
RT

) = exp

(
ε(T )

RT

)
(11)

which is, e.g., k′R/kR ≈ 50 if ε(T ) = 0.1 eV at T = 300 K. Note, that this is a

simplified model that assumes an isolated system whose thermal-energy contribution

is not transferred to the environment and it is completely accumulated in the reaction

coordinate of the excited-state reaction.

Finite temperatures can also influence the excited-state dynamics in a different

manner. As illustrated in Figure S3b, at higher temperatures, the system occupies

more geometries displaced further from the minimum-energy geometry than at lower

temperatures. This follows from the fact that at higher temperatures the systems

populates higher vibrational states, more extended than the vibrational ground state.

Further, the maximum of the distribution gradually shifts from the minimum of the

potential energy (ground state of the harmonic oscillator) to the reflection points of

the potential (excited states of the harmonic oscillator). Thus, at higher temperatures

one can populate more strongly displaced geometries that can lie closer to the maxima

of the potential-energy barriers in the excited state. Then, the system requires less

energy to overcome these barriers which can open up new reaction paths.

S2.3 Potential Pitfalls of FITWIPS

When extending (standard) zero-temperature Wigner sampling to FITWIPS, one ac-

counts for the finite temperature by allowing the population of vibrationally excited

states. In general, this allows for a more realistic phase-space sampling as one is not

restricted to the idealized zero-temperature situation. One can run into problems,

however, when using the harmonic-oscillator approximation in FITWIPS in the case

of high temperatures and low frequencies, as then, highly excited vibrational states
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can be populated. For example, as was shown in Figure S1, for ω = 100 cm−1 and

T = 500 K, vibrational states with quantum numbers up to n = 11 are populated by

about Pn > 1 %. For these highly excited states, anharmonicity can become more

important. In the worst case, one could even populate one of the (infinitely many)

harmonic oscillator bound states that lies above the dissociation limit of the real (an-

harmonic) potential.

Circumventing these problems is not an easy task as the only straightforward ap-

proach consists in first computing the real potential energy surfaces (PES) and calculate

the real vibrational eigenstates considering anharmonicity and a finite number of bound

states, before performing the phase-space sampling. Unfortunately, the immense com-

putational cost associated to the calculation of the PES prohibits this approach for all

but the smallest systems. A complementary approach able to capture (at least part

of) the anharmonicity of the potential is to employ (ab initio) molecular dynamics

simulations to explore the PES. In this case, the system possess an energy of kBT

in each degree of freedom corresponding to the high-temperature limit of the vibra-

tional energy [eq. (9)]. This yields a better description of low-frequency modes where

the largest contribution of the vibrational energy is given by thermal energy contribu-

tion compared to zero-temperature Wigner sampling; however, for all higher-frequency

modes one misses the ZPE completely. As the ZPE is at least for moderate temper-

atures –say, 300 K –often larger than kBT , the largest part of the total energy is not

accounted for. Additionally, with the smaller energy available in classical sampling,

one then is able to sample only a very narrow region with low energies around the

energetic minimum of these high-frequency normal modes. Finally, one should stress

out, that the high-temperature limit energy of kBT in classical sampling does not rep-

resent the thermal energy contribution ε(T ) in quantum sampling. In fact, usually

ε(T ) � kBT . We then conclude that no affordable conformational sampling method

is able to correctly describe the real PES, and provide the correct energy, so that in

practical applications, one should decide for each system individually which sampling
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method is most suitable.

In the main paper, we present excited-state dynamics simulations of the organic

chromophore 2-nitronaphthalene (2NN). As is shown, it is mandatory that the molecule

is given the correct energy so that the nuclear motion is simulated adequately. Given

only the small thermal-energy contribution available, e.g., from molecular dynamics

simulations, the motion of the molecule would be too slow and it would possess little

energy to climb energy barriers in the excited states. It is therefore advisable to use

Wigner phase-space sampling to include at least the ZPE (at zero temperature) –that

accounts for, e.g., 96 % of the total vibrational energy at a temperature of T = 300 K

–or both the ZPE and thermal-energy contributions (using FITWIPS).

For 2NN, the lowest-frequency normal mode corresponds to the nitro-group torsion

with a frequency of ω = 87 cm−1 . For this frequency, Figure S4 shows the coordinate

probability distributions of the Wigner ensembles at temperatures of 0, 300, and 500 K,

as well as those of the harmonic oscillator eigenstates n = 0, 8, and 12. The eigenstates

n = 8 and n = 12 are the highest excited eigenstates with a thermal population

Pn ≥ 1 % at T = 300 and 500 K, respectively. As it can be expected, the probability

distributions of the vibrational ground state (n = 0) differs considerable from that of the

excited modes for n = 8, 12 (Figure S4a). These differences translate to the thermally

averaged probability distributions for the finite temperatures (T = 300, 500 K), see

Figure S4(b), as these distributions do not possess their maximum at x = 0 anymore,

as the zero-temperature case does, where x is the normal-coordinate displacement with

respect to the minimum-energy geometry. Instead, these distributions display two

maxima located symmetrically at positive and negative displacements of |x| ∼ 0.6 and

long tails that extend 2-3 times further than the zero-temperature distribution. These

effects can influence notably the excited state dynamics at different temperatures as is

shown for 2NN in the main manuscript.
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Harmonic Oscillator Normal Modes
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Figure S4: (a) Normal mode probability distributions |Ψn|2 for eigenfunctions
of the harmonic oscillator. (b) Thermal average of probability distributions
|Ψ(T )| =

∑
i Pi(T )|Ψi|2 for different temperatures. Probabilities Pi(T ) deter-

mined for frequency ω = 87 cm−1 of the nitro group torsional mode of 2NN.

S3 Excited States at the Franck-Condon Geom-

etry

Here, we present a characterization of the excited states of 2NN computed at the

minimum-energy Franck-Condon geometry in Figure S5. The geometry optimization

as well as the calculation of the excited states was conducted at the PBE0/DZP level of

theory using ADF2016.12 The natural transition orbitals (NTOs) shown in Figure S5

possess weights of at least 98 %, thus, describing the individual excited states suffi-

ciently. The excited states are characterized as by the shape of their main NTOs (nπ∗

vs. ππ∗) and classified either as charge-transfer (CT) or localized excitations (LE).
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State Energy (eV) fOSC Character Natural Transition Orbitals

S1 3.80 0.064 SCT (ππ
∗)

S2 3.85 0.000 SLE (nπ
∗)

S3 4.47 0.100 SLE (ππ
∗)

S4 4.50 0.000 SLE (nπ
∗)

T1 2.85 0.000 TCT (ππ
∗)

T2 3.32 0.000 TLE (nπ
∗)

T3 3.32 0.000 TLE (ππ
∗)

T4 3.67 0.000 TLE (ππ
∗)

T5 3.77 0.000 TCT (ππ
∗)

T6 4.00 0.000 TLE (nπ
∗)

Figure S5: Excited states computed at the Franck-Condon geometry. fOSC de-
notes the oscillator strength.
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