Disordered peptide chains in an α -C-based coarse-grained model: Electronic Supplementary Information

Łukasz Mioduszewski, Marek Cieplak

1 Distance distributions and lack of angular dependence

Figs. S1 through S3 show the distance distributions in the ss overlap-determined contacts for all pairs of amino acids for which an ss contact is possible. The distributions are only for the situations in which the directional criteria to make a contact are satisfied. The bin size is 0.1 Å and the columns add up to 1. Fig. S4 shows that there is very little correlation between the C_{α} - C_{α} distance and the angles used in ss directional criteria (Fig. S4). This is illustrated for VAL-VAL (small side chains), GLN-GLN (mid-sized side chains) and ARG-ARG (large side chains).

Figure S1: Distance distributions in the ss contacts for the indicated residues.

Figure S2: Distance distributions in the ss contacts for the indicated residues.

Figure S3: Distance distributions in the ss contacts for the indicated residues.

Figure S4: The left panels show 3D histograms of the C_{α} - C_{α} distance and $\cos(\mathbf{n}_i, \mathbf{r}_{i,j})$ (the blue color means fewer contacts for that distance and cosine, the red color – more contacts) for the ss contacts. The right panels show 2D histograms of the C_{α} - C_{α} distance. See main text for the definition of $\mathbf{n}_i, \mathbf{r}_{i,j}$.

2 The angle-dependent potentials

We use a level-2 angle potential [1], which means that its form depends on 2 subsequent amino acids. All coefficients given here in kJ/mol were converted to ϵ units assuming $\epsilon = 6.6$ kJ/mol= 1.58 kcal/mol.

2.1 Bending (bond) angle

We fit the statistical potentials to a sixth degree polynomial of the type $ax^6 + bx^5 + cx^4 + dx^3 + ex^2 + fx + g = 0$ (x is bending angle in radians). The coefficients are listed in Table S1. Three examples of the resulting fits are presented (Fig. S5).

Residue types	g	f	е	d	с	b	a
OGY	137767.79	-417519.49	523500.78	-347689.12	129057.84	-25394.62	2070.23
OGP	54278.92	-166180.67	210155.26	-140514.29	52413.91	-10347.96	845.30
OPY	228674.80	-725717.73	953197.76	-663471.51	258240.30	-53322.81	4566.15
OPP	70917.09	-225383.01	295803.17	-205330.47	79600.56	-16366.17	1396.80
OXY	104836.85	-322892.77	411580.60	-277931.71	104885.76	-20978.03	1737.72
OXP	111628.30	-353562.64	462991.27	-320775.91	124020.92	-25374.95	2147.03

Table S1: Coefficients used in the polynomial fitting (in kJ/mol) for 6 different cases. O is any amino acid, Y any amino acid except for P, X any amino acid except for G and P.

2.2 Dihedral angle

The dihedral angle potential was fitted to a function with 5 coefficients: $a\sin(x) + b\cos(x) + c\sin^2(x) + d\cos^2(x) + e\sin(x)\cos(x) + f$. The coefficients used (a, b, c, d, e) are listed in Table S2).

Residue types	f	a	b	с	d	е
GG	2.117	-0.008	0.004	-0.125	0.425	-0.061
GP	2.639	0.929	-0.185	0.016	0.286	0.073
GX	2.149	-0.006	0.203	-0.161	0.461	0.133
\mathbf{PG}	2.165	-0.102	0.109	0.149	0.152	-0.742
PP	3.205	1.171	0.091	-0.254	0.558	-1.570
РХ	2.304	0.115	0.429	0.201	0.100	-0.803
XG	2.136	0.018	-0.071	0.122	0.179	-0.624
XP	2.740	0.739	0.686	0.219	0.083	-0.791
XX	2.142	0.006	0.257	0.155	0.146	-0.448

Table S2: Coefficients of fitting the dihedral potential (in kJ/mol) for 9 different combinations of the two middle amino acids. X can be any amino acid except for G and P.

Figure S5: Statistical bending potential [1] (black) and fitted polynomial (red) for OGY, OPY and OXY (code as in [1] and in Table S1.

Figure S6: Statistical dihedral potential [1] (dots) and fitted polynomial (lines) for different cases (code as in [1] and in Table S1.

3 Turning contacts on and off adiabatically

Figure S7: Data for the Q_{30} system for the various durations, t_{ad} , of the adiabatic switching on and off of the contacts. The top panel shows the smoothed total energy, E, as a function of time in a single trajectory. The bottom panel shows the end-to-end distance, l, as a function of t_{ad} as averaged over 100 trajectories. The error of the mean is of the order of the datapoint size. The variance, σ , also gets larger when t_{ad} exceeds 50 τ .

4 Temperature selection

Fig. S8 shows the equilibrium values of end-to-end distance for several temperatures for systems containing polyQ tracts. The best agreement with the all-atom and experimental data is obtained for $T = 0.3 \epsilon/k_B$.

Figure S8: Average end-to-end distance as a function of the sequence length for polyQ (bottom panel) and for sequences of type KKWQ_mAKK (top panel). The four temperatures indicated are in units of ϵ/k_B . The solid data points are obtained by using our coarse-grained model. The open circles are based on the all-atom [3] and experimental [4] results. The error of the mean is lower than size of points.

5 Time evolution

Fig. S9 shows f_{cc} matrices of 4 different homopolymers, differing in length and composition. The fraction of common contacts (f_{cc}) between two structures is computed as number of their common contacts divided by the total number of contacts in the structure that contains more contacts. Sharp changes in the f_{cc} correspond to conformational transitions.

To quantify these transitions, the following clustering algorithm was developed: two structures are in one cluster if f_{cc} between them is larger than a certain threshold (50 %) and they are next to each other in the timeline (the algorithm works by joining neighboring clusters and f_{cc} between clusters is computed as an average f_{cc} between structures). The red lines denote borders between clusters. The thresholds are system-dependent (A₃₀ is much more mobile and has too many conformational clusters in a given timescale, whereas N₆₀ is much more sluggish; in the latter case, some conformational changes in the first 150 000 τ are omitted). We observe that for some systems, large conformational changes take place on the scale of hundreds of microseconds. PolyA is found to keep forming a helix and then unravel it again, in distinction to all-atom results obtained for larger values of n. This behaviour of polyA can be due to the approximate nature of our model, but this can also be a matter of adopting relevant time scales.

Figure S9: The f_{cc} matrices (fraction of the same contacts between structures from different times, saved every 1000 τ) for different homopolymers. The red lines are explained in the text.

6 Replacing LYS with ASN to mimic pH change

Figure S10: The results obtained by our IDP coarse-grained model for Q_m flanked with lysine (solid green circles) and asparagine(solid purple circles) as a function of the number of residues, n. The top panel is for l, the middle for σ , and the bottom one for R_g . The open circles correspond to the results obtained by experiment as in ref. [4].

References

- [1] A. Ghavani, E. van der Giessen, and P. R. Onck, Coarse-grained potentials for local interactions in unfolded proteins, *J. Chem. Theor. Comp.*, 2013, **9**, 432-440.
- [2] M. Chwastyk, M. Jaskólski and M. Cieplak, The volume of cavities in proteins and virus capsids, *Proteins*, 2016, 84(9), 1275-86.
- [3] Á. Gómez-Sicilia, M. Sikora, M. Cieplak and M. Carrión-Vázquez, An exploration of the universe of polyglutamine structures *PLoS Comp. Biol.*, 2015, **11**, e1004541.
- [4] R. H. Walters & R. M. Murphy, Examining Polyglutamine Peptide Length: A Connection between Collapsed Conformations and Increased Aggregation. J. Mol. Biol., 2009, 393(4), 978–992.