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A Conversion factors

Dipole and rotational strengths were converted from atomic to CGS units with
conversion factors taken from Ref. 1.
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B Spin-Orbit Operator

Spin-orbit coupling constants describe the coupling between states of different
spin-multiplicity. The spin-orbit coupling constant between a singlet state 'm
and a triplet state ®n is given by (!m|VS9€3n) where VS9€ is the spin-orbit
operator. The calculations of these matrix elements are non-trivial2. VS0C
affects both the spin and the spatial part of the wave function. The effective one-
electron spin-orbit coupling operator can be expressed in the second quantisation
representation?® in various equivalent ways, using e.g. Cartesian or spin-tensor
components in different conventions:
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The Cartesian components of the triplet excitation operator are given by

T;q = a;)aaqﬁ + a;r;,@aqa (4)
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The prefactor 1/2 in the Cartesian triplet operators has been moved in front of
the summation in the expression for VS9€. Otherwise, these equations directly
compare with the equations in Ref. 3.

The three components of the triplet excitation operator in spin tensor form
are given by:
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The relations between the Cartesian and the spin tensor form of the triplet
excitation operators are:
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The transformation matrix elements between the Cartesian and the spin tensor
forms can then be obtained from the definition of the triplet excitation operators

in these forms. VS9C can be written as:
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This leads to the following identities:
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B.1 Matrix Elements of the Spin-Orbit Operator

If the reference states are closed-shell, spin symmetry can be utilised to introduce
singlet- and triplet-adapted excitation operators. Both, the Hamiltonian and
the components of the dipole operator, can be expressed in a spin-free form?*.
For spin-forbidden transitions involving a singlet and a triplet state, the three
components of the triplet state can couple to the singlet state through the three
components of the SOC operator:
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The Mg = 0 component (T;q = Tpléo) does not change the Mg quantum
number. A formulation that requires only the (10|T,q|>?f) matrix element of
the T}, operator can be found using the Wigner-Eckart theorem. This allows
the treatment of singlet-triplet transitions in a spin-free formalism without gen-
erating the Mg = +1 and Mg = —1 components of the triplet state.

B.2 Wigner-Eckart Theorem

The Wigner-Eckart theorem® (WET) can be applied to generate equalities
where all components of the triplet state are expressed using only the (*0[T,,|*° f)
matrix element of the T, operator. With the help of the WET
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In our case, ' =0, m"" =m’ =0, k = j = 1. We thus need the 35 symbols
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This leads to the following equalities:
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The matrix elements of the SOC operator can then be expressed as

(fo[vEOCpPHy) = ZVl 0T ) (23)
(fo[vEOCPPty) = ZVl 0T F) (24)
(oVSOCpLs) = Zvl O 00Ty ) (25)



B.3 Phosphorescence

The spin-forbidden emission, e.g. from an excited triplet state |2 f) to a singlet
ground state |*0), are called phosphorescence. To compute oscillator strengths
for phosphorescence, the first-order transition dipole matrix elements between
the initial and final states accumulated over the three Mg components are re-
quired. For exact spin eigen functions, the dipole transition moment vanishes for
states of different multiplicities. But when spin-orbit interactions are considered
the eigenfunctions of the electronic Hamiltonian are no longer pure spin states®.
The first non-vanishing SOC correction to the dipole transition strength is:
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Using perturbation theory, the spin contaminants can be expanded in a set

of intermediate states to obtain a sum-over-states (SOS) expression for exact
states:
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For the unperturbed states, the excitation energies wy for the three components
of a triplet intermediate state 3k do not depend on m.
We can rewrite the last equation as
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with the short-hand notation
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We can then express the first-order transition strengths as
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Four contributions are obtained on opening the parentheses, all of the form:
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Here, i and j are the perturbed or unperturbed singlet state. Similarly, f and

g are the perturbed or unperturbed triplet state.

B.4 Generalisation to Circularly Polarised Phosphores-

cence

The derivation in the last section exploited only the facts that

e the formula for the transition strength includes a summation over the m

components of the triplet state and

e the transition operators do not affect the spin.

The result is also valid if  as transition operator in the left or the right transition
moment is replaced by other operators which do not effect the spin as e.g.



components of the electronic momentum p or the electronic angular momentum
L, which is appears in the operator for the magnetic field. As long as this
precondition is fulfilled for two operators X and Y we can write the transition
strength accumulated over the three Mg components of the triplet state as:
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is evaluated with the Mg = 0 components of the triplet states.

The rotational strength tensor is written as a sum of an electric dipole-
electric quadrupole contribution and an electric dipole-magnetic dipole contri-
bution”®. The pseudoscalar rotational strength for isotropic samples is obtained
by orientational averaging of the rotational strength tensor and thereby the con-
tribution from the quadrupole moment vanishes. To compute the pseudoscalar
rotational strengths for circularly polarised phosphorescence of an isotropic sam-
ple, the first-order transition dipole matrix elements between the initial and final
states averaged over the Mg components are required. This is similar to phos-
phorescence. But now for the velocity gauge formulation, we need transition
matrix elements for the linear and angular momentum operators:

ColplPHEALIY = DT Y T T (41)
B=x,y,z a=x,y,z
B.5 Dipole strength in velocity gauge

For the dipole strengths, the results are similar to oscillator strengths, the differ
only in a scalar factor. The results for the dipole strength in the length gauge
were already given in Sec. B.3. The first non-vanishing SOC correction to the
dipole strength in the velocity gauge formulation is:

Yoo OR = foplPHC ety = Y Y Tt TR (42)

m B=x,y,z a=x,y,z
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