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A Conversion factors

Dipole and rotational strengths were converted from atomic to CGS units with
conversion factors taken from Ref. 1.

• 1 a.u. of dipole strength (e2a2o) = 6.460 48× 10−36 esu2 cm2

• 1 a.u. of rotational strength

(
e2h̄2ao
me

)
= 4.714 44× 10−38 esu cm erg G−1

B Spin-Orbit Operator

Spin-orbit coupling constants describe the coupling between states of different
spin-multiplicity. The spin-orbit coupling constant between a singlet state 1m
and a triplet state 3n is given by 〈1m|V SOC|3n〉 where V SOC is the spin-orbit
operator. The calculations of these matrix elements are non-trivial2. V SOC

affects both the spin and the spatial part of the wave function. The effective one-
electron spin-orbit coupling operator can be expressed in the second quantisation
representation3 in various equivalent ways, using e.g. Cartesian or spin-tensor
components in different conventions:

V SOC =
1

2

∑
pq

(V x
pqT

x
pq + V y

pqT
y
pq + V z

pqT
z
pq) (1)

=
1

2

∑
pq

(V +
pqT

1,−1
pq − V −pqT

1,+1
pq + V z

pqT
z
pq) (2)

=
1

2

∑
pq

(− V 1,+1
pq T 1,−1

pq − V 1,−1
pq T 1,+1

pq + V 1,0
pq T 1,0

pq ) (3)

The Cartesian components of the triplet excitation operator are given by

T xpq = a†pαaqβ + a†pβaqα (4)

T ypq = 1
i (a
†
pαaqβ − a†pβaqα) (5)

T zpq = a†pαaqα − a†pβaqβ (6)
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The prefactor 1/2 in the Cartesian triplet operators has been moved in front of
the summation in the expression for V SOC. Otherwise, these equations directly
compare with the equations in Ref. 3.

The three components of the triplet excitation operator in spin tensor form
are given by:

T 1,−1
pq = a†pβaqα , (7)

T 1,+1
pq = −a†pαaqβ , (8)

T 1,0
pq =

1√
2

(a†pαaqα − a†pβaqβ) . (9)

The relations between the Cartesian and the spin tensor form of the triplet
excitation operators are:

T xpq = −T 1,+1
pq + T 1,−1

pq , (10)

T ypq =
1

i
(−T 1,+1

pq − T 1,−1
pq ) , (11)

T zpq = Tpq =
√

2T 1,0
pq . (12)

The transformation matrix elements between the Cartesian and the spin tensor
forms can then be obtained from the definition of the triplet excitation operators
in these forms. V SOC can be written as:

V SOC =
1

2

∑
pq

(
V x
pq(−T 1,+1

pq + T 1,−1
pq ) + V y

pq
1
i (−T

1,+1
pq − T 1,−1

pq ) (13)

+V z
pq

√
2T 1,0

pq

)
=

1

2

∑
pq

(
(V x
pq + iV y

pq)T
1,−1
pq − (V x

pq − iV y
pq)T

1,+1
pq +

√
2V z

pqT
1,0
pq

)
(14)

This leads to the following identities:

V 1,−1
pq = −(V x

pq + iV y
pq) = −V +

pq , (15)

V 1,+1
pq = −(V x

pq − iV y
pq) = −V −pq , (16)

V 1,0
pq =

√
2V z

pq . (17)

B.1 Matrix Elements of the Spin-Orbit Operator

If the reference states are closed-shell, spin symmetry can be utilised to introduce
singlet- and triplet-adapted excitation operators. Both, the Hamiltonian and
the components of the dipole operator, can be expressed in a spin-free form4.
For spin-forbidden transitions involving a singlet and a triplet state, the three
components of the triplet state can couple to the singlet state through the three
components of the SOC operator:
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〈10|V SOC|3,MSf〉 =


− 1

2

∑
pq V

1,+1
pq 〈10|T 1,−1

pq |3,+1f〉

− 1
2

∑
pq V

1,−1
pq 〈10|T 1,+1

pq |3,−1f〉

+ 1
2

∑
pq V

1,0
pq 〈10|T 1,0

pq |3,0f〉

(18)

The MS = 0 component (T zpq = T 1,0
pq ) does not change the MS quantum

number. A formulation that requires only the 〈10|Tpq|3,0f〉 matrix element of
the Tpq operator can be found using the Wigner-Eckart theorem. This allows
the treatment of singlet-triplet transitions in a spin-free formalism without gen-
erating the MS = +1 and MS = −1 components of the triplet state.

B.2 Wigner-Eckart Theorem

The Wigner-Eckart theorem5 (WET) can be applied to generate equalities
where all components of the triplet state are expressed using only the 〈10|Tpq|3,0f〉
matrix element of the Tpq operator. With the help of the WET

〈j′m′′′|T kq
′
|jm′′〉 = (−1)m

′′′−m′

(
j′ k j
−m′′′ q′ m′′

)
(

j′ k j
−m′ q m

) 〈j′m′|T kq|jm〉 (19)

In our case, j′ = 0, m′′′ = m′ = 0, k = j = 1. We thus need the 3j symbols(
0 1 1
0 q m

)
. The values are 0 for q 6= −m, so that we are left with the 3j

symbols

(
0 1 1
0 −m m

)
which are 1/

√
3 for m = −1,+1 and −1/

√
3 for m = 0.

This leads to the following equalities:

〈10|T 1,0
pq |3,0f〉 =

1√
2
〈10|Tpq|3,0f〉 (20)

〈10|T 1,−1
pq |3,+1f〉 = −〈10|T 1,0

pq |3,0f〉 = − 1√
2
〈10|Tpq|3,0f〉 (21)

〈10|T 1,+1
pq |3,−1f〉 = −〈10|T 1,0

pq |3,0f〉 = − 1√
2
〈10|Tpq|3,0f〉 (22)

The matrix elements of the SOC operator can then be expressed as

〈10|V SOC|3,+1f〉 =
1

2

∑
pq

V 1,+1
pq 〈10|Tpq|3,0f〉 (23)

〈10|V SOC|3,−1f〉 =
1

2

∑
pq

V 1,−1
pq 〈10|Tpq|3,0f〉 (24)

〈10|V SOC|3,0f〉 =
1

2

∑
pq

V 1,0
pq 〈10|Tpq|3,0f〉 (25)
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B.3 Phosphorescence

The spin-forbidden emission, e.g. from an excited triplet state |3f〉 to a singlet
ground state |10〉, are called phosphorescence. To compute oscillator strengths
for phosphorescence, the first-order transition dipole matrix elements between
the initial and final states accumulated over the three MS components are re-
quired. For exact spin eigen functions, the dipole transition moment vanishes for
states of different multiplicities. But when spin-orbit interactions are considered
the eigenfunctions of the electronic Hamiltonian are no longer pure spin states6.
The first non-vanishing SOC correction to the dipole transition strength is:∑

m

|〈10|r|3,mf〉(1)|2 =
∑
m

(
〈3,mf |x|10〉(1)〈10|x|3,mf〉(1) (26)

+〈3,mf |y|10〉(1)〈10|y|3,mf〉(1) (27)

+〈3,mf |z|10〉(1)〈10|z|3,mf〉(1))

Using perturbation theory, the spin contaminants can be expanded in a set
of intermediate states to obtain a sum-over-states (SOS) expression for exact
states:

〈10|x|3,mf〉(1) =
∑
1k

〈10|x|1k〉〈1k|V SOC|3,mf〉
ωf − ωk

, (28)

−
∑
3,mk

〈10|V SOC|3,mk〉〈3,mk|x|3,mf〉
ωk

.

For the unperturbed states, the excitation energies ωk for the three components
of a triplet intermediate state 3k do not depend on m.

We can rewrite the last equation as

〈10|x|3,mf〉(1) = 〈10̃x|V SOC|3,mf〉+ 〈10|V SOC|3,mf̃x〉 (29)

with the short-hand notation

|10̃x〉 =
∑
1k

|1k〉 〈
1k|x|10〉
ωf − ωk

(30)

|3,mf̃x〉 =
∑
3,mk

|3,mk〉 〈
3,mk|x|3,mf〉
−ωk

(31)

We can then express the first-order transition strengths as

〈3,mf |x|10〉(1)〈10|x|3,mf〉(1) = (32)∑
m

(
〈10̃x|V SOC|3,mf〉+ 〈10|V SOC|3,mf̃x〉

)∗
×
(
〈10̃x|V SOC|3,mf〉+ 〈10|V SOC|3,mf̃x〉

)
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Four contributions are obtained on opening the parentheses, all of the form:∑
m

〈1i|V SOC|3,mf〉∗〈1j|V SOC|3,mg〉

=
1

4

∑
pq,rs

(
〈1i|V 1,+1

pq T 1,−1
pq |3,+1f〉∗〈1j|V 1,+1

rs T 1,−1
rs |3,+1g〉

+ 〈1i|V 1,−1
pq T 1,+1

pq |3,−1f〉∗〈1j|V 1,−1
rs T 1,+1

rs |3,−1g〉

+ 〈1i|V 1,0
pq T 1,0

pq |3,0f〉∗〈1j|V 1,0
rs T 1,0

rs |3,0g〉
)

(33)

=
1

4

∑
pq,rs

(
(V 1,+1
pq )∗V 1,+1

rs + (V 1,−1
pq )∗V 1,−1

rs + (V 1,0
pq )∗V 1,0

rs

)
(34)

× 〈1i|T 1,0
pq |3,0f〉∗〈1j|T 1,0

rs |3,0g〉

=
1

4

∑
pq,rs

(
(V x
pq + iV y

pq)
∗(V x

rs + iV y
rs) + (V x

pq − iV y
pq)
∗(V x

rs − iV y
rs) (35)

+
√

2(V z
pq)
∗√2V z

rs

)
× 〈1i| 1√

2
Tpq|3,0f〉∗〈1j| 1√

2
Trs|3,0g〉

We get:∑
m

〈1i|V SOC|3,mf〉∗〈1j|V SOC|3,mg〉

=
1

4

∑
pq,rs

(
2(V x

pq)
∗V x
rs + 2(V y

pq)
∗V y
rs + 2(V z

pq)
∗V z
rs

)
(36)

× 1

2
〈1i|Tpq|3,0f〉∗〈1j|Trs|3,0g〉

=
1

4

∑
α=x,y,z

〈1i|
∑
pq

V α
pqTpq|3,0f〉∗〈1j|

∑
rs

V α
rsTrs|3,0g〉 (37)

=
∑

α=x,y,z

〈1i| 12
∑
pq

V α
pqTpq|3,0f〉∗〈1j| 12

∑
rs

V α
rsTrs|3,0g〉 (38)

Here, i and j are the perturbed or unperturbed singlet state. Similarly, f and
g are the perturbed or unperturbed triplet state.

B.4 Generalisation to Circularly Polarised Phosphores-
cence

The derivation in the last section exploited only the facts that

• the formula for the transition strength includes a summation over the m
components of the triplet state and

• the transition operators do not affect the spin.

The result is also valid if x as transition operator in the left or the right transition
moment is replaced by other operators which do not effect the spin as e.g.

5



components of the electronic momentum p or the electronic angular momentum
L, which is appears in the operator for the magnetic field. As long as this
precondition is fulfilled for two operators X and Y we can write the transition
strength accumulated over the three MS components of the triplet state as:∑

m=

〈10|X|3f〉(1)〈3f |Y |10〉(1) =
∑

α=x,y,z

TX,α0f TY,αf0 (39)

where

TX,α0f =
∑
1k

〈10|X|1k〉〈1k| 12
∑
pq V

α
pqTpq|3,0f〉

ωf − ωk
, (40)

−
∑
3,0k

〈10| 12
∑
pq V

α
pqTpq|3,0k〉〈3,0k|X|3,0f〉

ωk
,

is evaluated with the MS = 0 components of the triplet states.
The rotational strength tensor is written as a sum of an electric dipole-

electric quadrupole contribution and an electric dipole-magnetic dipole contri-
bution7,8. The pseudoscalar rotational strength for isotropic samples is obtained
by orientational averaging of the rotational strength tensor and thereby the con-
tribution from the quadrupole moment vanishes. To compute the pseudoscalar
rotational strengths for circularly polarised phosphorescence of an isotropic sam-
ple, the first-order transition dipole matrix elements between the initial and final
states averaged over the MS components are required. This is similar to phos-
phorescence. But now for the velocity gauge formulation, we need transition
matrix elements for the linear and angular momentum operators:

〈10|p|3f〉〈3f |L|10〉 =
∑

β=x,y,z

∑
α=x,y,z

T
pβ ,α
0f T

Lβ ,α
f0 (41)

B.5 Dipole strength in velocity gauge

For the dipole strengths, the results are similar to oscillator strengths, the differ
only in a scalar factor. The results for the dipole strength in the length gauge
were already given in Sec. B.3. The first non-vanishing SOC correction to the
dipole strength in the velocity gauge formulation is:∑

m

|〈10|p|3,mf〉(1)|2 = 〈10|p|3f〉〈3f |p|10〉 =
∑

β=x,y,z

∑
α=x,y,z

T
pβ ,α
0f T

pβ ,α
f0 (42)
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2016, 12, 1892–1904.

[5] C. M. Marian, in Spin-Orbit Coupling in Molecules, John Wiley & Sons,
Inc., 2001, pp. 99–204.

[6] O. Vahtras, H. Agren, P. Jørgensen, H. J. A. Jensen, T. Helgaker and
J. Olsen, J Chem. Phys., 1992, 97, 9178–9187.

[7] T. B. Pedersen, H. Koch and K. Ruud, J. Chem. Phys., 1999, 110, 2883–
2892.

[8] T. B. Pedersen and A. E. Hansen, Chem. Phys. Lett., 1995, 246, 1–8.

7


