Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2018

Supplementary

Diffusion mechanism of Na ion – polaron complex in potential cathode materials NaVOPO₄ and VOPO₄ of rechargeable sodium-ion batteries

Huu Duc Luong, ^a Thi Dung Pham, ^a Yoshitada Morikawa, ^b Yoji Shibutani ^{a, c} and Van An Dinh † ^{a,c}

Table S1: The on-site Coulomb U and the on-site exchange interaction J for GGA+U calculation

TYPES	U	J	Band gap (eV)
Liechtenstein approach ¹	4.2	0.7	2.179
	4.5	1.0	2.120
	5.6	0.7	2.120
Dudarev approach ²	3.1	0.0	1.940
	3.5	0.0	2.028
	3.8	0.0	2.066
	4.0	0.0	2.023

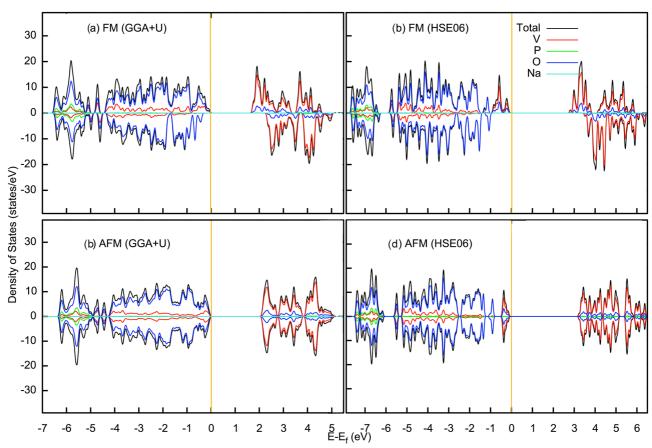


Figure S1: Density of state (DOS) of AFM and FM configurations of NaVOPO₄ obtained by GGA+U and HSE06. The negative (positive) value of DOS indicates the down (up) spin.

a. NanoTechnology Program, Vietnam – Japan University, National University of Hanoi, Luu Huu Phuoc Street, My Dinh I Ward, Nam Tu Liem District, Hanoi, Vietnam.

b. Department of Precision Science and Applied Physic, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan

^{c.} Center for Atomic and Molecular Technologies, Graduate School of Engineering, Osaka University, Yamadaoka 2-1, Osaka 565-0871, Japan.

[†] Corresponding author's email: dv.an@vju.ac.vn

¹ A. I. Liechtenstein, V. I. Anisimov and J. Zaane, Phys. Rev. B, 1995, 52, R5467.

² S. L. Dudarev, G. A. Botton, S. Y. Savrasov, C. J. Humphreys and A. P. Sutton, Phys. Rev. B, 1998, 57, 1505.

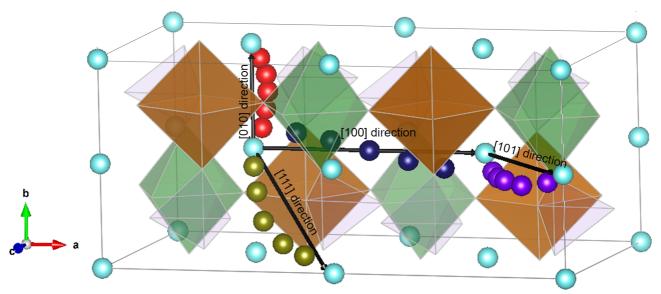


Figure S2: Diffusion directions in NaVOPO₄

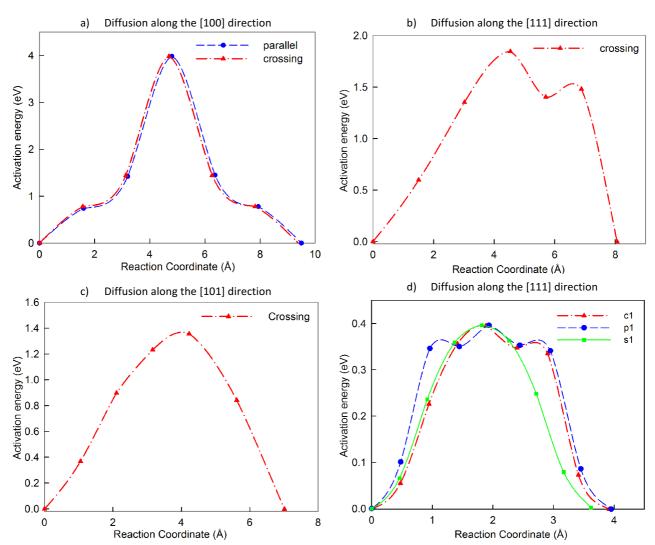


Figure S3: Activation energy profile of Na vacancy – positve polaron complex in NaVOPO₄. The red, blue and green curves coresspond to the crosing, parallel and single diffusion processes, respectively.

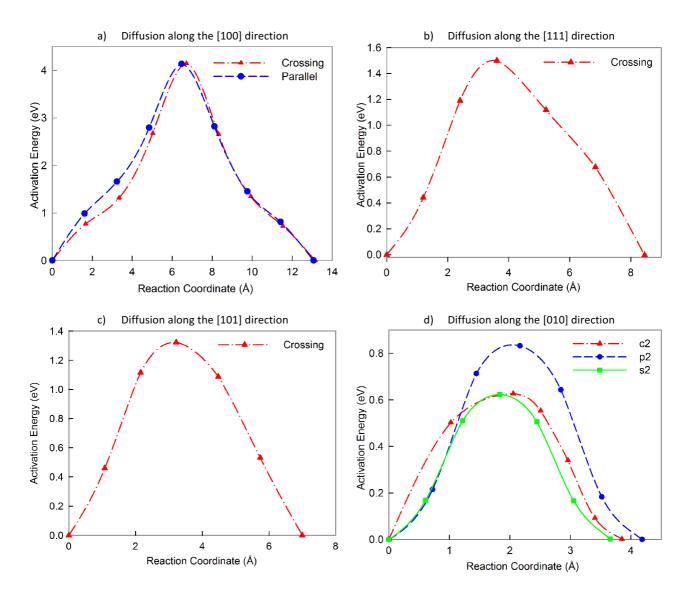


Figure S4: Activation energy profile of Na ion – negative polaron complex in VOPO₄. Red, blue and green curvers illustrate the crosing, parallel and single diffusion processes, respectively.