ELECTRONIC SUPPLEMENTARY INFORMATION

Direct Diabatization Based on Nonadiabatic Couplings: The N/D Method

Zoltan Varga[†], Kelsey A. Parker[†] and Donald G. Truhlar*

Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute, 207 Pleasant Street SE, University of Minnesota, Minneapolis, MN 55455-0431

(1) Origin files for visualizing the H₃-LIN and H₃-BENT examples

The electronic supplementary information includes two standalone files:

- H3_LIN.opj
- H3_BENT.opj

These are files produced by the Origin (version 9.3) software for interactive visualization of the H₃-LIN and H₃-BENT data shown noninteractively shown in Figs. 5 and 6, respectively. The files can be opened with the program *Origin* or with the freely distributed *Origin* Viewer program (https://www.originlab.com/viewer/).

(2) Comparison of *Molpro*-derived NAC and N/D-derived $\nabla \theta_{JK}$ for LiF

To compare the *Molpro*-derived NAC and N/D-derived $\nabla \theta_{JK}$, we used the LiF system presented in the manuscript ($\varepsilon = 160 \text{ E}_{h}^{-1}$). The magnitudes of the NAC elements were calculated as described in the manuscript by using *Molpro* and eqs (15), (17), and (18), where $w_{\rho} = 1$ for both Li and F atoms. This results in the plot of $g_{12}(R_{LiF})$ shown in Fig. S1(b) below and Fig 1(a) in the manuscript.

We fit rotation angle, $\theta_{12}(R_{LiF})$ by employing the integral of the Cauchy–Lorentz distribution function, $f_{CL}(R_{LiF})$:

$$f_{CL}(R_{\rm LiF}) = \frac{1}{\pi \gamma \left[1 + \left(\frac{R_{\rm LiF} - R_0}{\gamma}\right)^2\right]}$$
$$F_{CL}(R_{\rm LiF}) = \int f_{CL}(R_{\rm LiF}) \, \mathrm{d}R_{\rm LiF} = \frac{1}{2} + \frac{1}{\pi} \operatorname{atan}\left(\frac{R_{\rm LiF} - R_0}{\gamma}\right)$$

In the fit, the complementary F_{CL} function: $1 - F_{CL}(R_{LiF})$, is used because $\theta_{12}(R_{LiF})$ behaves like a vertical reflection of the integral. The derivative of the fitted $\theta_{12}(R_{LiF})$ with respect to R_{LIF} is: $-f_{CL}(R_{LiF})$. Since the range of $\theta_{12}(R_{LiF})$ is 0 to $\pi/2$, the function was normalized before the fit. The two fit parameters, R_0 and γ were evaluated with *Excel* Solver: $R_0 = 5.73255$ Å and $\gamma = 0.27564$ Å. For comparison with $g_{12}(R_{LiF})$, the absolute value of $f_{CL}(R_{LiF})$ was multiplied by $\pi/2$ (to adjust to $\theta_{12}(R_{LiF})$) and converted from Å⁻¹ to bohr⁻¹; the new function is $f'_{CL}(R_{LiF})$. All of the curves described are plotted in Figure S1. The comparison between the derivative of the rotation angle and the NAC is good. Around the state crossing ($R_{LiF} = \sim 5.7$ Å), the $g_{12}(R_{LiF})$ and $f'_{CL}(R_{LiF})$ curves both show a large jump. In the $R_{LiF} < 4$ Å region, the $g_{12}(R_{LiF})$ shows different behavior than the fit. This feature of $g_{12}(R_{LiF})$ was purposely avoided in our N/D diabatization and this current fit, i.e., the diabats and the adiabats are close to equal.

Fig. S1. Plot (a) shows the normalized rotation angle θ_{12} and its fit by the complementary $F_{CL}(R_{\text{LIF}})$ function. Plot (b) compares g_{12} (magnitude of calculated NACs) with the f'_{CL} function (derivative of complementary $F_{CL}(R_{\text{LIF}})$ function).