ELECTRONIC SUPPLEMENTARY INFORMATION

Direct Diabatization Based on Nonadiabatic Couplings: The N/D Method

Zoltan Varga ${ }^{\dagger}$, Kelsey A. Parker ${ }^{\dagger}$ and Donald G. Truhlar*
Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute, 207 Pleasant Street SE, University of Minnesota, Minneapolis, MN 55455-0431

(1) Origin files for visualizing the H_{3}-LIN and H_{3}-BENT examples

The electronic supplementary information includes two standalone files:

- H3_LIN.opj
- H3_BENT.opj

These are files produced by the Origin (version 9.3) software for interactive visualization of the H_{3}-LIN and H_{3}-BENT data shown noninteractively shown in Figs. 5 and 6, respectively. The files can be opened with the program Origin or with the freely distributed Origin Viewer program (https://www.originlab.com/viewer/).

(2) Comparison of Molpro-derived NAC and N/D-derived $\boldsymbol{\nabla} \boldsymbol{\theta}_{J K}$ for LiF

To compare the Molpro-derived NAC and N/D-derived $\nabla \theta_{J K}$, we used the LiF system presented in the manuscript $\left(\varepsilon=160 \mathrm{E}_{\mathrm{h}}^{-1}\right)$. The magnitudes of the NAC elements were calculated as described in the manuscript by using Molpro and eqs (15), (17), and (18), where $w_{\rho}=1$ for both Li and F atoms. This results in the plot of $g_{12}\left(\mathrm{R}_{\mathrm{LiF}}\right)$ shown in Fig. S1(b) below and Fig 1(a) in the manuscript.

We fit rotation angle, $\theta_{12}\left(\mathrm{R}_{\mathrm{LiF}}\right)$ by employing the integral of the Cauchy-Lorentz distribution function, $f_{C L}\left(R_{\mathrm{LiF}}\right)$:

$$
\begin{gathered}
f_{C L}\left(R_{\mathrm{LiF}}\right)=\frac{1}{\pi \gamma\left[1+\left(\frac{R_{\mathrm{LiF}}-R_{0}}{\gamma}\right)^{2}\right]} \\
F_{C L}\left(R_{\mathrm{LiF}}\right)=\int f_{C L}\left(R_{\mathrm{LiF}}\right) \mathrm{d} R_{\mathrm{LiF}}=\frac{1}{2}+\frac{1}{\pi} \operatorname{atan}\left(\frac{R_{\mathrm{LiF}}-R_{0}}{\gamma}\right)
\end{gathered}
$$

In the fit, the complementary $F_{C L}$ function: $1-F_{C L}\left(R_{\mathrm{LiF}}\right)$, is used because $\theta_{12}\left(\mathrm{R}_{\mathrm{LiF}}\right)$ behaves like a vertical reflection of the integral. The derivative of the fitted $\theta_{12}\left(\mathrm{R}_{\mathrm{LiF}}\right)$ with respect to $\mathrm{R}_{\mathrm{LIF}}$ is: $-f_{C L}\left(R_{\mathrm{LiF}}\right)$. Since the range of $\theta_{12}\left(\mathrm{R}_{\mathrm{LiF}}\right)$ is 0 to $\pi / 2$, the function was normalized before the fit. The two fit parameters, R_{0} and γ were evaluated with Excel Solver: $R_{0}=5.73255$ \AA and $\gamma=0.27564 \AA$. For comparison with $g_{12}\left(\mathrm{R}_{\mathrm{LiF}}\right)$, the absolute value of $f_{C L}\left(R_{\mathrm{LiF}}\right)$ was multiplied by $\pi / 2$ (to adjust to $\theta_{12}\left(\mathrm{R}_{\mathrm{LiF}}\right)$) and converted from \AA^{-1} to bohr ${ }^{-1}$; the new function is ${f^{\prime}}_{C L}\left(R_{\text {LiF }}\right)$. All of the curves described are plotted in Figure S 1 . The comparison between the
derivative of the rotation angle and the NAC is good. Around the state crossing $\left(R_{L i F}=\sim 5.7 \AA\right)$, the $g_{12}\left(\mathrm{R}_{\mathrm{LiF}}\right)$ and $f_{C L}^{\prime}\left(R_{\text {LiF }}\right)$ curves both show a large jump. In the $R_{L i F}<4 \AA$ region, the $g_{12}\left(\mathrm{R}_{\mathrm{LiF}}\right)$ shows different behavior than the fit. This feature of $g_{12}\left(\mathrm{R}_{\mathrm{LiF}}\right)$ was purposely avoided in our N/D diabatization and this current fit, i.e., the diabats and the adiabats are close to equal.

Fig. S1. Plot (a) shows the normalized rotation angle θ_{12} and its fit by the complementary $F_{C L}\left(R_{\mathrm{LIF}}\right)$ function. Plot (b) compares g_{12} (magnitude of calculated NACs) with the $f^{\prime}{ }_{C L}$ function (derivative of complementary $F_{C L}\left(R_{\mathrm{LIF}}\right)$ function).

