Revival of collective water structure and dynamics in reverse micelles brought about by protein encapsulation

Supplementary Information

Philipp Honegger and Othmar Steinhauser

Geometry

We address the conformational stability of UBQ as monitored by the radius of gyration $r_{\rm gyr}$ representing a measure of protein compactness. Its temporal evolution is shown in the top panel of the figure below. We observe a contraction of ≈ 0.5 Å in the initial time period of 100 ns for all λ -scalings. Afterwards, $r_{\rm gyr}$ remains stable for the complete simulation run. For this reason, all trajectory analyses in the main article were started at the 100 ns mark. This result is important as it shows that fluctuations of the UBQ dipole are mainly rotational in character and not brought about by conformational changes. The tendency for proteins to favor compact conformations in crowded or encapsulated environment has been pointed out previously¹ and may result from stabilization by decreased hydration of encapsulated proteins observed both empirically and in simulation^{2–5}.

In order to properly address the electric anisotropy shown by the dielectric properties, we shortly analyze the spatial anisotropy of the RM. This can be done by considering the radial distance $R(\theta, \phi, t)$ of a vector originating from the RM center of mass and joining a surface element orientated in the direction described by the polar angles θ and ϕ . The resulting bundle of vectors is exemplified in the graphic at the right of the figure below. The temporal fluctuation of the distribution of $R(\theta, \phi, t)$ can be expanded as a linear combination of spherical

Top panel: Radius of gyration r_{gyr} of the UBQ molecule as a function of time. The three levels of λ -scaling are shown in blue (unscaled), purple (half-scaled) and red (fully scaled).

Bottom panel: Temporal evolution of the RM radius r_{RM} calculated from C_0^0 of the vectors connecting the RM center of mass with the LDAO nitrogens as representatives of the RM surface elements.

Insets in bottom panel: $C_m^{l*}C_m^l$ terms with l = 1. These parameters show asphericity. The pale lines and the bright lines represent the terms $C_0^{1*}C_0^1$ and $C_1^{1*}C_1^1 = C_{-1}^{1*}C_{-1}^1$ respectively. The three levels of scaling are disentangled in the three insets.

harmonics $Y_m^l(\theta, \phi)$:

$$R(t,\theta,\phi) = \sum_{l=0}^{\infty} \sum_{m=-l}^{m=+l} C_m^l(t) Y_m^l(\theta,\phi)$$
(1)

In this harmonic analysis, the product $C_m^{l*}C_m^l$ is the probability for the population of a certain angular space. This type of analysis was first used for RMs by Brown and Clarke⁶ who developed this product as a time series and presented the sphericity anisotropy decay. $C_0^0 C_0^0$ stands for a spherical RM with C_0^0 given by

$$\frac{C_0^0}{\sqrt{4\pi}} = \frac{1}{4\pi} \int d\Omega R(\Omega, t) = \langle R(t) \rangle \tag{2}$$

yielding the average radius of the RM at time t. The RM radius $r_{RM} = \langle R \rangle$ is shown in the bottom panel of above figure. The higher coefficients $C_m^{l*}C_m^l$ with l > 0 are a measure of anisotropy. Two of them, $C_1^{1*}C_1^1 = C_{-1}^{1*}C_{-1}^1$ as well as $C_0^{1*}C_0^1$ are shown in the bottom panel of above figure. While both $\langle R \rangle$ and the anisotropy terms fluctuate, this fluctuation is antagonistic and never strays far from the perfect spherical shape. Hence, no systematic trends indicative of an inherent asphericity can be observed. It is remarkable that insertion of a protein into an RM preserves sphericity. This effect is probably brought about by the tendency of water surface minimization. AOT RMs, on the other hand, are known to be aspherical^{3,7}, particularly for small water loadings w_0^8 and if they do not contain a solute⁹, possibly due to distortions caused by the strong ionic interactions in a limited space.

Single-particle dynamics of water

Shell-specific single-particle reorientational relaxation times. For reasons of statistical stability, only the innermost, strongest occupied 3×3 submatrix shown in Fig. 7 in the main article was analyzed. The vertical bars show the respective τ_{sp} for the unscaled (blue), half-scaled (purple) and the fully scaled (red) systems with respect to the bulk water τ_{sp} (black line at the bottom of each panel). Each row stands for a certain Delauny distance with regards to the protein surface and each column refers to a Delauny distance from the surfactant wall.

Table below: Numeric relaxation times in picoseconds sorted by shell as integral over the single-particle TCF.

		$ au_{ m sp}^{ m unscaled}$	$ au_{ m sp}^{ m half-scaled}$	$ au_{ m sp}^{ m fully\ scaled}$
RM-shell1	UBQ-shell1	250.0	263.0	240.0
	UBQ-shell2	31.9	31.9	22.8
	UBQ-shell3	29.0	25.1	21.3
RM-shell2	UBQ-shell1	204.2	169.3	135.4
	UBQ-shell2	5.7	6.3	6.6
	UBQ-shell3	5.4	5.8	5.0
RM-shell3	UBQ-shell1	95.2	78.5	78.5
	UBQ-shell2	5.5	5.7	6.1
	UBQ-shell3	4.8	5.1	5.9

λ -scaling

This section describes the λ -scaling of the water-interface interactions performed for this study. Petrov and Zagrovic have pointed out flawed protein dynamics such as exaggerated aggregation behaviour brought about by current force fields¹⁰. Best, Mittal *et al.*¹¹ showed that rescaling the potential well depth ϵ_{ij} of the Lennard-Jones potential

$$U_{ij}^{\text{LJ}}(r_{ij}) = 4\epsilon_{ij} \{ (\frac{\sigma_{ij}}{r_{ij}})^{12} - (\frac{\sigma_{ij}}{r_{ij}})^6 \}$$
(3)

comes with remarkable improvements in solvation energy and protein-protein interaction behaviour. CHARMM force fields do not store pair-wise Lennard-Jones distance and interaction parameters σ_{ij} and ϵ_{ij} , but atom parameters σ_i and ϵ_i , which are combined for each pair by the Lorenz-Berthelot relations

$$\sigma_{ij} = \frac{1}{2}(\sigma_i + \sigma_j) \tag{4}$$

$$\epsilon_{ij} = (\epsilon_i \epsilon_j)^{\frac{1}{2}} \tag{5}$$

In Bests and Mittals approach, ϵ and thus the entire shape of the dispersion interaction is then simply re-scaled by

$$\epsilon_{ij}^{\text{scaled}} = \lambda \epsilon_{ij} \tag{6}$$

with $\lambda = 1.1$ being sufficient to yield more realistic protein behaviour^{11,12}. The thus adjusted interaction parameters were imposed on the force field after loading all parameters using the NBFIX key word. The tables below list the NBFIX parameters for the system with only the protein-water interactions adjusted and the NBFIX commands for the system with both protein-water and surfactant-water interaction being adjusted, respectively. The first column contains the SPC/E water oxygen only, since the hydrogen does not exert dispersion interaction in this model. The second column lists the CHARMM36¹³⁻¹⁶ force field atom types representing protein- and surfactant atoms.

atom type 1	atom type 2	ϵ	σ	
OT	С	-0.142283	3.777	
OT	CA	-0.113503	3.7694	
OT	CC	-0.113503	3.777	
OT	CD	-0.113503	3.777	
OT	CE1	-0.11187	3.867	
OT	CE2	-0.108529	3.857	
OT	CP1	-0.06067	4.052	
OT	CP2	-0.100609	3.952	
OT	CP3	-0.100609	3.952	
OT	CPH1	-0.095927	3.577	
OT	CPH2	-0.095927	3.577	
OT	CS	-0.142283	3.977	
OT	CPT	-0.134982	3.637	
OT	CY	-0.115909	3.767	
OT	CAI	-0.115909	3.767	
OT	CT	-0.06067	4.052	
OT	CT1	-0.076742	3.777	
OT	CT2	-0.10152	3.787	
OT	CT2A	-0.10152	3.787	
OT	CT3	-0.119813	3.817	
OT	Н	-0.09201	2.0015	
OT	HA	-0.063631	3.097	
OT	HB1	-0.063631	3.097	
OT	HB2	-0.071785	3.117	
OT	HE1	-0.075533	3.027	

NBFIX commands for the half-scaled system ($\lambda_{H_{2}O, UBQ} = 1.1, \lambda_{H_{2}O, LDAO/DMAG} = 1.0$)

	0.00/1/1	5.05/
HB	-0.063631	3.097
HC	-0.09201	2.0015
HP	-0.074305	3.1352
HR1	-0.09201	2.677
HR2	-0.09201	2.477
HR3	-0.037888	3.245
HS	-0.135662	2.227
HA1	-0.091005	3.117
HA2	-0.079104	3.117
HA3	-0.06646	3.117
Ν	-0.191855	3.627
NC2	-0.191855	3.627
NH1	-0.191855	3.627
NH2	-0.191855	3.627
NH3	-0.191855	3.627
NP	-0.191855	3.627
NR1	-0.191855	3.627
NR2	-0.191855	3.627
NR3	-0.191855	3.627
NY	-0.191855	3.627
0	-0.14861	3.477
OB	-0.14861	3.477
OC	-0.14861	3.477
OH1	-0.16731	3.547
OS	-0.16731	3.547
S	-0.287782	3.777
SM	-0.264453	3.752
SS	-0.294108	3.97
	HB HC HP HR1 HR2 HR3 HS HA1 HA2 HA3 NS NC2 NH1 NH2 NH3 NP NR1 NR2 NR3 NY O OB OC OH1 OS S SM SS	HB20.063631HB-0.063631HC-0.09201HP-0.074305HR1-0.09201HR2-0.09201HR3-0.037888HS-0.135662HA1-0.091005HA2-0.079104HA3-0.06646N-0.191855NC2-0.191855NH1-0.191855NH2-0.191855NH3-0.191855NR4-0.191855NR3-0.191855NR3-0.191855NR3-0.191855O-0.14861OB-0.14861OC-0.14861OH1-0.16731S-0.287782SM-0.294108

INDEIA COIIIIII		y scaled system	$(\Lambda_{\rm H_2O, UBQ} =$	$1.1, \Lambda_{H_20, 1}$
	atom type 1	atom type 2	ε	σ
	OT	С	-0.142283	3.777
	OT	CA	-0.113503	3.7694
	OT	CC	-0.113503	3.777
	OT	CD	-0.113503	3.777
	OT	CE1	-0.11187	3.867
	OT	CE2	-0.108529	3.857
	ОТ	CP1	-0.06067	4.052
	ОТ	CP2	-0.100609	3.952
	ОТ	CP3	-0.100609	3.952
	ОТ	CPH1	-0.095927	3.577
	OT	CPH2	-0.095927	3.577
	ОТ	CS	-0.142283	3.977
	ОТ	CPT	-0.134982	3.637
	ОТ	CY	-0.115909	3.767
	ОТ	CAI	-0.115909	3.767
	ОТ	CT	-0.06067	4.052
	OT	CT1	-0.076742	3.777
	OT	CT2	-0.10152	3.787
	OT	CT2A	-0.10152	3.787
	OT	CT3	-0.119813	3.817
	OT	Н	-0.09201	2.0015
	OT	HA	-0.063631	3.097
	OT	HB1	-0.063631	3.097
	OT	HB2	-0.071785	3.117
	OT	HE1	-0.075533	3.027

OT	HE2	-0.069174	3.037
OT	HB	-0.063631	3.097
OT	HC	-0.09201	2.0015
OT	HP	-0.074305	3.1352
OT	HR1	-0.09201	2.677
OT	HR2	-0.09201	2.477
OT	HR3	-0.037888	3.245
OT	HS	-0.135662	2.227
OT	HA1	-0.091005	3.117
OT	HA2	-0.079104	3.117
OT	HA3	-0.06646	3.117
OT	Ν	-0.191855	3.627
OT	NC2	-0.191855	3.627
OT	NH1	-0.191855	3.627
OT	NH2	-0.191855	3.627
OT	NH3	-0.191855	3.627
OT	NP	-0.191855	3.627
OT	NR1	-0.191855	3.627
OT	NR2	-0.191855	3.627
OT	NR3	-0.191855	3.627
OT	NY	-0.191855	3.627
OT	0	-0.14861	3.477
OT	OB	-0.14861	3.477
OT	OC	-0.14861	3.477
OT	OH1	-0.16731	3.547
OT	OS	-0.16731	3.547
OT	S	-0.287782	3.777
OT	SM	-0.264453	3.752
OT	SS	-0.294108	3.97
OT	CG2O2	-0.134298	3.477
OT	CG311	-0.076742	3.777
OT	CG321	-0.10152	3.787
OT	CG334	-0.119043	3.992
OT	CH2	-0.134374	4.0612
OT	CH3	-0.19531	3.8805
OT	HGA1	-0.091005	3.117
OT	HGA2	-0.080259	3.117
OT	HGP1	-0.09201	2.0015
OT	HGP5	-0.09201	2.477
OT	NG3P0	-0.191855	3.627
OT	OG2D1	-0.14861	3.477
OT	OG302	-0.135662	3.427
OT	OG311	-0.188027	3.542
OT	OG312	-0.14861	3.527

References

- [1] H.-X. Zhou, Archives of Biochemistry and Biophysics, 2008, 469, 76-82.
- [2] S. Mukherjee, P. Chowdhury and F. Gai, J. Phys. Chem. B, 2006, 110, 11615–11619.
- [3] A. V. Martinez, S. C. DeSensi, L. Dominguez, E. Rivera and J. E. Straub, J. Chem. Phys., 2011, 134, 055107.
- [4] J. Tian and A. E. Garcia, Biophys. J., 2009, 96, L57–L59.
- [5] S. Abel, M. Waks, W. Urbach and M. Marchi, J. Am. Chem. Soc., 2006, 128, 382–383.
- [6] D. Brown and J. H. R. Clarke, J. Phys. Chem., 1988, 92, 2881–2888.
- [7] S. Abel, F. Sterpone, S. Bandyopadhyay and M. Marchi, J. Phys. Chem. B, 2004, 108, 19458–19466.
- [8] V. R. Vasquez, B. C. Williams and O. A. Graeve, J. Phys. Chem. B, 2011, 115, 2979–2987.

- [9] A. V. Martinez, E. Malolepsza, L. Dominguez, Q. Lu and J. E. Straub, J. Phys. Chem. B, 2014, **119**, 9084–9090.
- [10] D. Petrov and B. Zagrovic, PLOS Computational Biology, 2014, 10, e1003638.
- [11] R. B. Best, W. Zheng and J. Mittal, J. Chem. Theory Comput., 2014, 10, 5113–5124.
- [12] P. Honegger, M. Schmollngruber and O. Steinhauser, Phys. Chem. Chem. Phys., 2018, 20, 19581–19594.
- [13] D. Beglov and B. Roux, J. Chem. Phys., 1994, 100, 9050.
- [14] A. D. M. Jr., D. Bashford, M. Bellott, R. L. D. Jr., J. D. Evanseck, M. J. Field, S. Fischer, J. Gao, H. Guo, S. Ha, D. Joseph-McCarthy, L. Kuchnir, K. Kuczera, F. T. K. Lau, C. Mattos, S. Michnick, T. Ngo, D. T. Nguyen, B. Prodhom, W. E. Reiher, B. Roux, M. Schienkrich, J. C. Smith, R. Stote, J. Straub, M. Watanabe, J. Wlorklewicz-Kuczera, D. Yin and M. Karplus, *J. Phys. Chem. B*, 1998, **102(18)**, 3586–3616.
- [15] A. D. M. Jr., M. Feig and C. L. B. III, J. Am. Chem. Soc., 2004, 126, 698-699.
- [16] R. B. Best, X. Zhu, J. Shim, P. E. Lopes, J. Mittal, M. Feig and A. D. M. Jr., J. Chem. Theory Comput., 2012, 8(9), 3257–3273.