Electronic Supplementary Information for:

"CO₂ Interaction with Violarite (FeNi₂S₄) Surfaces: A Dispersion-Corrected DFT Study"

Sergio Posada-Pérez,^a David Santos-Carballal,^b Umberto Terranova,^b Alberto Roldan,^b Francesc

Illas,^a and Nora H. de Leeuw^{*b,c}

^a Departament de Ciència de Materials i Química Física & Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, c/Martí i Franquès 1, 08028 Barcelona, Spain

^b School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, United Kingdom. E-mail: <u>deLeeuwN@cardiff.ac.uk</u>; Tel: +44 (0)29 2087 0219

^c Department of Earth Sciences, Utrecht University, Princetonplein 9, 3584 CC Utrecht, The Netherlands

Electronic Supplementary Information contains:

- Figures showing the side and top views as well as the stacking of the atomic layer of the unrelaxed and relaxed FeNi₂S₄ $\{001\}$ and $\{111\}$ surface terminations.
- Figures showing the initial and final geometries used for the simulation of the CO_2 interaction with the FeNi₂S₄{001} and {111} surfaces.
- Tables showing the adsorption energies and structural parameters of the CO₂ adsorption with the FeNi₂S₄ {001} and {111} surfaces.
- Tables showing the simulated wavenumbers of the fundamental vibrational modes for the isolated and adsorbed CO₂ molecule on the FeNi₂S₄{001} and {111} surfaces.

Fig. ESI-1 Side, top views and stacking of unrelaxed FeNi₂S₄{001} surface terminations (*N*). Balls in yellow, grey, soft blue, and dark blue represent the S, Fe, Ni_A, and Ni_B atoms, respectively. Ni_A atoms are represented using bigger balls than Ni_B ions.

 (Ni_A) $(S)_8(Ni_B)_3Fe_B$ $(Ni_A)_2$ $(S)_8(Ni_B)_2(Fe_B)_2$ $(Ni_A)_2$ $(S)_8Ni_B(Fe_B)_3$ $(Ni_A)_2$ $(S)_8(Ni_B)_2(Fe_B)_2$ (Ni_A)

 $(Ni_A) \\ (S)_8(Ni_B)_2(Fe_B)_2 \\ (Ni_A)_2 \\ (S)_8(Ni_B)_2(Fe_B)_2 \\ (Ni_A)_2 \\ (S)_8(Ni_B)_2(Fe_B)_2 \\ (Ni_A)_2 \\ (S)_8(Ni_B)_2(Fe_B)_2 \\ (Ni_A) \\ (Ni_A)$

 $(Ni_A) \\ (S)_8(Ni_B)_2(Fe_B)_2 \\ (Ni_A)_2 \\ (S)_8Ni_B(Fe_B)_3 \\ (Ni_A)_2 \\ (S)_8(Ni_B)_2(Fe_B)_2 \\ (Ni_A)_2 \\ (S)_8(Ni_B)_3Fe_B \\ (Ni_A)$

Fig. ESI-2 Side, top views and stacking of unrelaxed FeNi₂S₄{111} surface terminations (*N*). Balls in yellow, grey, soft blue, and dark blue represent the S, Fe, Ni_A, and Ni_B atoms, respectively. Ni_A atoms are represented using bigger balls than Ni_B ions.

Fig. ESI-3 Sketch of the initial geometries of the CO_2 molecule adsorbed on the {001} FeNi₂S₄ surfaces as an example. The CO_2 molecule was placed perpendicularly to the surface, interacting through C atom (left), the C and O atom (middle), and two O atoms (right). Balls in yellow, grey, soft blue, dark blue, red and green represent the S, Fe, Ni_A, Ni_B, O and C atoms, respectively. Ni_A atoms are represented using bigger balls than Ni_B ions.

$E_{ m ads}$	<i>d</i> (C–O)	a(OCO)	$\Delta Q (CO_2)$	v (C=O strecth)	d(CO ₂ -Surf)	Sketches
/(eV)	/Å	/º	/e ⁻	/cm ⁻¹	/Å	
			Termina	ation 8		
-0.21	1.18	179.2	0.01	2345	3.00	А
-0.21	1.18	179.4	0.00	2341	3.11	В
			Termina	ation 2		
-0.26	1.18	179.8	0.00	2342	2.70	С
-0.21	1.17	179.3	0.01	2336	3.20	D
-0.20	1.17	179.6	0.00	2349	2.91	Е
-0.17	1.18	179.4	0.00	2347	3.23	F

Table ESI-1 Adsorption energy and structural parameters of the CO_2 adsorption on the terminations 8 and 2 of the FeNi₂S₄ {001} surface using the PW9-D2+*U* functional. Sketches of the adsorption configurations are shown in Fig. ESI-4.

<i>d</i> (C–O)	a(OCO)	$\Delta Q (CO_2)$	v (C=O strecth)	d(CO ₂ -Surf)	Sketches
/Å	/º	/e ⁻	/cm ⁻¹	/Å	
			PBE–D2 + <i>U</i>		
1.17	175.0	0.00	2516	2.92	G
1.17	174.8	0.00	2508	2.93	Н
			PBE–D3 + <i>U</i>		
1.18	176.9	0.01	2460	3.13	Ι
1.18	176.8	0.01	2510	3.08	J
1.18	174.2	0.01	2496	3.06	K
	d(C-O) /Å 1.17 1.17 1.18 1.18 1.18 1.18	d(C-O) α(OCO) /Å /° 1.17 175.0 1.17 174.8 1.18 176.9 1.18 176.8 1.18 174.2	$d(C-O)$ $\alpha(OCO)$ $\Delta Q (CO_2)$ $/Å$ /°/e ⁻ 1.17175.00.001.17174.80.001.18176.90.011.18176.80.011.18174.20.01	$d(C-O)$ $\alpha(OCO)$ $\Delta Q (CO_2)$ $v (C=O strecth)$ $/Å$ /°/e ⁻ /cm ⁻¹ $PBE-D2+U$ 0.00 2516 1.17 175.0 0.00 2508 1.17 174.8 0.00 2508 1.18 176.9 0.01 2460 1.18 176.8 0.01 2510 1.18 174.2 0.01 2496	d(C-O)α(OCO)ΔQ (CO2)ν (C=O strecth)d(CO2-Surf)/Å/°/e ⁻ /cm ⁻¹ /ÅPBE-D2+U1.17175.00.0025162.921.17174.80.0025082.93L17174.80.0025082.931.18176.90.0124603.131.18176.80.0125103.081.18174.20.0124963.06

Table ESI-2 Adsorption energy and structural parameters for the CO₂ adsorption on the surface termination 2 of FeNi₂S₄{001} surface using the PBE-D2+U and PBE-D3+U functionals. Sketches of the adsorption configurations are shown in Fig. ESI-4.

Fig. ESI-4 Sketches of the final CO₂ adsorption modes on FeNi₂S₄ {001} surfaces. Adsorption energies and structural parameters of the adsorption configurations A-K are reported in Tables ESI-1 and ESI-2. Balls in yellow, grey, soft blue, dark blue, red and green represent the S, Fe, Ni_A, Ni_B, O and C atoms, respectively. Ni_A atoms are represented using bigger balls than Ni_B ions.

Table ESI-3 Simulated wavenumbers of the fundamental vibrational modes (v) in cm^{-1} for the isolated CO₂ molecule and the most favourable adsorption geometries on selected terminations of the FeNi₂S₄{001} surface.

Isolated molecule	Termination 8	,	Termination 2	Fundamental vibrational mode	
PBE	PW91-D2+U	PW91-D2+U	PBE–D2+U	PBE–D3+U	
	А	С	G	Ι	
2365	2345	2342	2516	2460	Asymmetric Stretching
1319	1310	1313	1521	1794	Symmetric Stretching
633	603	611	1147	1493	Bending
631	602	609	1078	1436	Bending

Table ESI-4Adsorption energy data CO_2 adsorption on $FeNi_2S_4\{001\}$ surface using the PBE-
D3+U obtained in Table ESI-2 and PBE+U functional.

Geometry	$E_{ads} PBE+U$	Eads PBE-D3+U
Ι	-0.49	-0.68
J	-0.27	-0.42
K	-0.15	-0.41

Table ESI-5 Adsorption energy and structural parameters of the CO₂ adsorption on FeNi₂S₄{111} surface using the PW91-D2+U functional. Sketches of the adsorption configurations are shown in Fig. ESI-5.

$E_{ m ads}$	<i>d</i> (C–O)	α(ΟCΟ)	$\Delta Q (CO_2)$	v (C=O strecth)	d(CO ₂ -Surf)	Sketches
/(eV)	/Å	/ ⁰	/ e ⁻	/cm ⁻¹	/Å	
-0.18	1.18	179.2	0.01	2344	3.52	L
-0.17	1.18	179.3	0.00	2341	3.71	М
-0.16	1.18	179.8	0.01	2346	3.33	Ν

$E_{ m ads}$	<i>d</i> (C–O)	α(ΟCΟ)	$\Delta Q (CO_2)$	v (C=O strecth)	d(CO ₂ -Surf)	Sketches	
/(eV)	/Å	/°	/ e ⁻	/cm ⁻¹	/Å		
			PBE-	$\mathbf{D2} + U$			
-0.56	1.18	176.3	0.00	2423	3.03	0	
-0.24	1.19	179.2	0.00	2372	3.05	Р	
PBE-D3 +U							
-0.56	1.19	175.2	0.01	2436	2.39	Q	
-0.52	1.18	178.1	0.00	2298	2.81	R	
-0.32	1.18	174.4	0.01	2388	3.63	S	
-0.25	1.19	175.4	0.00	2357	3.25	Т	

Table ESI-6 Adsorption energy and structural parameters of the CO₂ adsorption on FeNi₂S₄{111} surface using the PBE-D2+U and PBE-D3+U functionals. Sketches of the adsorption configurations are shown in Fig. ESI-5.

Fig. ESI-5: Sketches of the final CO₂ adsorption modes on FeNi₂S₄ {111} surfaces. Adsorption energies and structural parameters of the adsorption configurations L-T are reported in Tables ESI-3 and ESI-4. Balls in yellow, grey, soft blue, dark blue, red and green represent the S, Fe, Ni_A, Ni_B, O and C atoms, respectively. Ni_A atoms are represented using bigger balls than Ni_B ions.

Table ESI-7 Simulated wavenumbers of the fundamental vibrational modes (v) in cm⁻¹ for the isolated CO₂ molecule and the most favourable adsorption geometries on selected terminations of the FeNi₂S₄{111} surface.

Isolated molecule	,	Termination 2	Fundamental vibrational mode	
PBE	PW91-D2+U	PBE–D2+U		
	L	0	Q	
2365	2344	2423	2436	Asymmetric Stretching
1319	1300	1467	1528	Symmetric Stretching
633	957	991	949	Bending
631	933	925	888	Bending