Electronic Supplementary Information

Noble Gas Hydrides in the Triplet State: HNgCCO⁺ (Ng = He, Ne, Ar, Kr, and Xe)

Ayan Ghosh^{a,c}, Arijit Gupta^{b,§}, Rishabh Gupta^{b,‡}, and Tapan K. Ghanty^{*,b,c}

^{*a*}Laser and Plasma Technology Division, Beam Technology Development Group, Bhabha Atomic Research Centre, Mumbai 400 085, INDIA.

^bTheoretical Chemistry Section, Chemistry Group, Bhabha Atomic Research Centre, Mumbai 400 085, INDIA.

^cHomi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, INDIA.

[§]Present address: Fergusson College, Savitribai Phule Pune University, Pune 411004, INDIA.

^{*}Present address: Department of Chemistry, Indian Institute of Science Education and Research Mohali, Knowledge City, Sector 81, SAS Nagar, Manauli, Punjab 140306, INDIA.

List of Tables

Table S1. Optimized Structural Parameters (Bond Length R in Å, Bond Angle θ in Degree) for Minima Structures of ³HNgCCO⁺ (Ng = He, Ne, Ar, Kr, and Xe) Ions, Calculated using B3LYP and MP2 Methods with DEF2 and AVTZ Basis sets.

Table S2. Optimized Structural Parameters (Bond Length R in Å, Bond Angle θ in Degree) for Transition State (TS) Structures of ³HNgCCO⁺ (Ng = He, Ne, Ar, Kr, and Xe) Ions, Calculated using B3LYP and MP2 Methods with DEF2 and AVTZ Basis sets.

Table S3. Energies (in kJ mol⁻¹) of the Various Dissociated Species Relative to the ³HNgCCO⁺ (Ng = He, Ne, Ar, Kr, and Xe) Ions, Calculated using B3LYP, MP2 and CCSD(T) Methods with DEF2 and AVTZ Basis sets.

Table S4. Harmonic Vibrational Frequencies (in cm⁻¹) Calculated Using MP2 Method using DEF2 and AVTZ Basis Sets for the Minima Structures of ³HNgCCO⁺ (Ng = He, Ne, Ar, Kr, and Xe) Compounds. Corresponding IR and Raman Intensity Values are Given within the Parentheses (in km mol⁻¹) and in Square Brackets (in Å⁴ amu⁻¹), respectively.

Table S5. Harmonic Vibrational Frequencies (in cm⁻¹) Calculated Using B3LYP Method using DEF2 and AVTZ Basis Sets for the Minima Structures of ³HNgCCO⁺ (Ng = He, Ne, Ar, Kr, and Xe) Compounds. Corresponding IR Intensity Values are Given within the Parentheses (in km mol⁻¹).

Table S6. Harmonic Vibrational Frequencies (in cm⁻¹) Calculated Using B3LYP and MP2 Methods using DEF2 and AVTZ Basis Sets for the Transition State (TS) Structures of ³HNgCCO⁺ (Ng = He, Ne, Ar, Kr, and Xe) Compounds. Corresponding IR Intensity Values are Given within the Parentheses (in km mol⁻¹).

Table S7. Harmonic Vibrational Frequencies (in cm^{-1}) and Intrinsic Force Constants in the Parentheses (in N m⁻¹) Corresponding to Individual Internal Coordinates in the ³HNgCCO⁺ (Ng = He, Ne, Ar, Kr, and Xe) Ions, Calculated using B3LYP and MP2 Methods with DEF2 and AVTZ Basis Sets.

Table S8. B3LYP and MP2 Calculated Values of the Mulliken Atomic Charges (in au) in the Minima and Transition State Structures of 3 HNgCCO⁺ (Ng = He, Ne, Ar, Kr, and Xe) Ions using DEF2 (AVTZ) Basis Sets.

Table S1. Optimized Structural Parameters (Bond Length R in Å, Bond Angle θ in Degree) for Minima Structures of ³HNgCCO⁺ (Ng = He, Ne, Ar, Kr, and Xe) Ions, Calculated using B3LYP and MP2 Methods with DEF2 and AVTZ Basis sets.

Geometrical	Methods	³ HHeCCO ⁺	³ HNeCCO ⁺	³ HArCCO ⁺	³ HKrCCO ⁺	³ HXeCCO ⁺
Parameters						
R(H–Ng)	B3LYP/DEF2	0.803	1.018	1.304	1.471	1.632
	B3LYP/AVTZ	0.803	1.021	1.307	1.453	1.636
K(H-Ng)	MP2/DEF2	0.764	0.990	1.283	1.429	1.611
	MP2/AVTZ	0.757	0.987	1.280	1.423	1.611
	B3LYP/DEF2	1.954	2.517	2.653	2.594	2.816
R(Ng-C)	B3LYP/AVTZ	1.951	2.510	2.671	2.693	2.810
R(Ng-C)	MP2/DEF2	2.038	2.574	2.688	2.745	2.825
	MP2/AVTZ	AVTZ 0.757 0.987 1.265 1.129 P/DEF2 1.954 2.517 2.653 2.594 2 P/AVTZ 1.951 2.510 2.671 2.693 2 P/AVTZ 1.951 2.510 2.671 2.693 2 P/AVTZ 1.951 2.510 2.671 2.693 2 /DEF2 2.038 2.574 2.688 2.745 2 /AVTZ 2.027 2.562 2.697 2.715 2 P/DEF2 1.346 1.350 1.349 1.346 1 P/AVTZ 1.342 1.346 1.349 1.346 1 P/AVTZ 1.342 1.346 1.349 1.346 1 P/AVTZ 1.360 1.362 1.359 1 1 P/DEF2 1.145 1.149 1.148 1.146 1 P/AVTZ 1.151 1.151 1.153 1 P/AVTZ 1.151 1.153 1.153 1 P/DEF2 180.0 180.0 180.0 180.0 <th>2.815</th>	2.815			
	B3LYP/DEF2	1.346	1.350	1.349	1.346	1.348
R(C-C)	B3LYP/AVTZ	1.342	1.346	1.345	1.344	1.344
	MP2/DEF2	1.357	1.360	1.359	1.358	1.358
	MP2/AVTZ	1.360	1.362	1.362	1.359	1.361
R(C-O)	B3LYP/DEF2	1.145	1.149	1.148	1.146	1.147
	B3LYP/AVTZ	1.147	1.151	1.151	1.149	1.149
	MP2/DEF2	1.151	1.154	1.153	1.153	1.152
	MP2/AVTZ	/AVTZ 1.342 1.346 1.345 1.344 DEF2 1.357 1.360 1.359 1.358 AVTZ 1.360 1.362 1.359 1.358 AVTZ 1.360 1.362 1.362 1.359 /DEF2 1.145 1.149 1.148 1.146 /AVTZ 1.147 1.151 1.151 1.149 DEF2 1.151 1.151 1.153 1.153 /VTZ 1.151 1.154 1.153 1.153 VTZ 1.151 1.155 1.154 1.154 /DEF2 180.0 180.0 180.0 180.0 /DEF2 180.0 180.0 180.0 180.0	1.152			
	B3LYP/DEF2	180.0	180.0	180.0	180.0	180.0
R(H-Ng) R(Ng-C) R(C-C) θ(H-Ng-C) θ(Ng-C-C) θ(C-C-O)	B3LYP/AVTZ	180.0	180.0	180.0	180.0	180.0
$\Theta(H-Ng-C)$	MP2/DEF2	180.0	757 0.987 1.280 1.423 1.611 954 2.517 2.653 2.594 2.816 951 2.510 2.671 2.693 2.810 938 2.574 2.688 2.745 2.825 927 2.562 2.697 2.715 2.815 346 1.350 1.349 1.346 1.348 342 1.346 1.345 1.344 1.344 357 1.360 1.359 1.358 1.358 360 1.362 1.362 1.359 1.361 145 1.149 1.148 1.146 1.147 147 1.151 1.151 1.153 1.152 151 1.155 1.154 1.153 1.152 0.0 180.0 180.0 180.0 180.0 0.0 180.0 180.0 180.0 180.0 0.0 180.0 180.0 180.0 180.0 0.0 180.0 180.0 180.0 180.0 0.0 180.0 180.0 180.0 180.0 0.0 180.0 180.0 180.0 180.0 0.0 180.0 180.0 180.0 180.0 0.0 180.0 180.0 180.0 180.0 0.0 180.0 180.0 180.0 180.0 0.0 180.0 180.0 180.0 180.0 0.0 180.0 180.0 180.0 180.0 0.0 180.0 <t< th=""><th>180.0</th></t<>	180.0		
	MP2/AVTZ	180.0	180.0	180.0	180.0	180.0
	B3LYP/DEF2	180.0	180.0	180.0	180.0	180.0
	B3LYP/AVTZ	180.0	180.0	180.0	180.0	180.0
Hang-C-C)	MP2/DEF2	180.0	180.0	180.0	180.0	180.0
	MP2/AVTZ	180.0	180.0	180.0	180.0	180.0
	B3LYP/DEF2	180.0	180.0	180.0	180.0	180.0
	B3LYP/AVTZ	180.0	180.0	180.0	180.0	180.0
θ(H-Ng-C) θ(Ng-C-C) θ(C-C-O)	MP2/DEF2	180.0	180.0	180.0	180.0	180.0
	MP2/AVTZ	180.0	180.0	180.0	180.0	180.0

Table S2. Optimized Structural Parameters (Bond Length R in Å, Bond Angle θ in Degree) for Transition State (TS) Structures of ³HNgCCO⁺ (Ng = He, Ne, Ar, Kr, and Xe) Ions, Calculated using B3LYP and MP2 Methods with DEF2 and AVTZ Basis sets.

Geometrical	Methods	³ HHeCCO ⁺	³ HNeCCO ⁺	³ HArCCO ⁺	³ HKrCCO ⁺	³ HXeCCO ⁺
Parameters						
R(H–Ng)	B3LYP/DEF2	0.780	1.016	1.288	1.444	1.608
	B3LYP/AVTZ	0.774	1.009	1.289	1.429	1.611
K(H-Ng)	MP2/DEF2	0.760	0.990	1.278	1.429	1.596
	MP2/AVTZ	0.752	0.986	1.275	1.413	1.596
	B3LYP/DEF2	2.217	2.565	3.062	3.208	3.455
R(Ng-C)	B3LYP/AVTZ	2.212	2.562	3.067	3.231	3.453
$\mathbf{K}(\mathbf{N}\mathbf{g}-\mathbf{C})$	MP2/DEF2	2.227	2.589	3.025	2.745	3.394
	MP2/AVTZ	2.211	2.575	3.014	3.165	3.374
	B3LYP/DEF2	1.354	1.351	1.354	1.354	1.355
R(C-C)	B3LYP/AVTZ	1.354	1.350	1.354	1.354	1.355
	MP2/DEF2	1.362	1.363	1.364	1.358	1.365
	MP2/AVTZ	1.363	1.363	1.365	1.365	1.366
R(C-O)	B3LYP/DEF2	1.145	1.149	1.150	1.150	1.151
	B3LYP/AVTZ	1.146	1.150	1.151	1.151	1.152
	MP2/DEF2	1.151	1.154	1.154	1.153	1.155
	(C-O) MP2/AVTZ 1.3 B3LYP/DEF2 1.1 B3LYP/AVTZ 1.1 MP2/DEF2 1.1 MP2/AVTZ 1.1 B3LYP/DEF2 110 B3LYP/DEF2 110	1.152	1.155	1.155	1.156	1.156
	B3LYP/DEF2	110.7	141.0	106.6	100.0	97.8
θ(H-Ng-C)	B3LYP/AVTZ	119.5	138.1	107.7	104.1	101.7
$\Theta(\mathbf{H}-\mathbf{Ng}-\mathbf{C})$	MP2/DEF2	119.0	155.0	108.8	103.2	98.8
	MP2/AVTZ	118.4	138.1	107.7	104.1	101.7
	B3LYP/DEF2	170.0	175.4	176.1	176.6	178.1
	B3LYP/AVTZ	172.6	174.4	176.6	176.8	178.0
Here Hard Hard Hard Hard Hard Hard Hard Hard	MP2/DEF2	172.4	177.6	176.6	177.1	108.8
	MP2/AVTZ	173.2	174.4	176.6	176.8	177.9
	B3LYP/DEF2	179.9	180.0	180.0	180.0	180.0
	B3LYP/AVTZ	180.0	179.0	180.0	180.0	180.0
H(C-C-O)	MP2/DEF2	180.0	180.0	180.0	180.0	180.0
	MP2/AVTZ	179.0	179.0	180.0	180.0	180.0

Table S3. Energies (in kJ mol⁻¹) of the Various Dissociated Species Relative to the 3 HNgCCO⁺ (Ng = He, Ne, Ar, Kr, and Xe) Ions, Calculated using B3LYP, MP2 and CCSD(T) Methods with DEF2 and AVTZ Basis sets.

Molecular	Methods	³ HHeCCO ⁺	³ HNeCCO ⁺	³ HArCCO ⁺	³ HKrCCO ⁺	³ HXeCCO ⁺
Species						
³ HNgCCO ⁺	All	0.0	0.0	0.0	0.0	0.0
	B3LYP/DEF2	-477.0	-504.8	-321.2	-267.7	-197.6
$N_{a} + {}^{3}HCCO^{+}$	B3LYP/AVTZ	-465.5	-492.4	-313.8	-252.4	-187.6
Ng + HCCO	MP2/DEF2	-497.3	-510.0	-330.3	-277.1	-206.7
	MP2/AVTZ	-496.6	-507.7	INACCOINACCOINACCOINACCO 0.0 0.0 0.0 -321.2 -267.7 -197.6 -313.8 -252.4 -187.6 -330.3 -277.1 -206.7 -328.0 -269.8 -201.9 233.5 287.0 357.1 245.4 306.8 371.5 199.1 252.3 322.6 206.5 264.7 332.6 75.3 77.8 80.4 82.5 90.4 90.4 75.5 79.2 84.5 75.2 82.9 86.1 160.8 168.8 170.2 164.1 177.0 175.3 135.3 139.3 133.6 145.6 149.2 141.2 233.5 287.0 357.1 245.4 306.7 371.5 199.3 252.5 323.0 206.8 265.0 332.9 465.1 518.6 588.7 472.7 534.1 598.9 459.2 512.4 582.8 464.7 522.9 590.8 26.4 34.0 42.1 34.0 46.3 52.1 19.7 28.1 37.9 19.2 30.8 39.2		
	B3LYP/DEF2	77.5	77.549.9233.5287.03593.766.7245.4306.83732.219.5199.1252.33238.227.0206.5264.733117.565.375.377.880128.174.882.590.490			357.1
2 HNg + 2 CCO ⁺	B3LYP/AVTZ	93.7	66.7	245.4	306.8	371.5
ning + CCU	MP2/DEF2	32.2	19.5	199.1	252.3	322.6
	MP2/AVTZ	38.2	IeCCO+ 3 HNeCCO+ 3 HArCCO+ 3 HKrCCO+ 3 HKrCCO+ 3 HKrCCO+0.00.00.00.00.0477.0 -504.8 -321.2 -267.7 -197.6 465.5 -492.4 -313.8 -252.4 -187.6 497.3 -510.0 -330.3 -277.1 -206.7 496.6 -507.7 -328.0 -269.8 -201.9 77.549.9233.5287.0357.193.766.7245.4306.8371.532.219.5199.1252.3322.638.227.0206.5264.7332.6117.565.375.377.880.428.174.882.590.490.4101.063.575.579.284.5102.463.975.282.986.175.343.7160.8168.8170.283.214.3164.1177.0175.328.311.7135.3139.3133.650.951.3145.6149.2141.277.749.9233.5287.0357.193.666.7245.4306.7371.532.319.6199.3252.5323.038.227.1206.8265.0332.9309.3281.5465.1518.6588.7321.0294.1472.7534.1598.9292.2279.5459.2512.4582.8			
	B3LYP/DEF2	117.5	65.3	75.3	77.8	80.4
HNg ⁺ + ³ CCO	B3LYP/AVTZ	128.1	74.8	82.5	90.4	90.4
	MP2/DEF2	101.0	63.5	75.5	79.2	84.5
	MP2/AVTZ	102.4	63.9	75.2	82.9	86.1
	B3LYP/DEF2	75.3	43.7	160.8	168.8	170.2
$H + {}^{2}NgCCO^{+}$	B3LYP/AVTZ	83.2	14.3	164.1	177.0	175.3
n + NgCCO	MP2/DEF2	EF2 32.2 19.5 199.1 252.3 322.6 /TZ 38.2 27.0 206.5 264.7 332.6 DEF2 117.5 65.3 75.3 77.8 80.4 VTZ 128.1 74.8 82.5 90.4 90.4 EF2 101.0 63.5 75.5 79.2 84.5 /TZ 102.4 63.9 75.2 82.9 86.1 DEF2 75.3 43.7 160.8 168.8 170.2 VTZ 83.2 14.3 164.1 177.0 175.3 EF2 28.3 11.7 135.3 139.3 133.6 /TZ 50.9 51.3 145.6 149.2 141.2 DEF2 77.7 49.9 233.5 287.0 357.1 VTZ 93.6 66.7 245.4 306.7 371.5 EF2 32.3 19.6 199.3 252.5 323.0 /TZ 38.2				
	MP2/AVTZ	50.9	.0 -504.8 -321.2 -267.7 -197.6 $.5$ -492.4 -313.8 -252.4 -187.6 $.3$ -510.0 -330.3 -277.1 -206.7 $.6$ -507.7 -328.0 -269.8 -201.9 5 49.9 233.5 287.0 357.1 7 66.7 245.4 306.8 371.5 2 19.5 199.1 252.3 322.6 2 27.0 206.5 264.7 332.6 5 65.3 75.3 77.8 80.4 1 74.8 82.5 90.4 90.4 0 63.5 75.5 79.2 84.5 4 63.9 75.2 82.9 86.1 3 43.7 160.8 168.8 170.2 2 14.3 164.1 177.0 175.3 3 11.7 135.3 139.3 133.6 9 51.3 145.6 149.2 141.2 7 49.9 233.5 287.0 357.1 5 66.7 245.4 306.7 371.5 3 19.6 199.3 252.5 323.0 2 27.1 206.8 265.0 332.9 3 281.5 465.1 518.6 588.7 0 294.1 472.7 534.1 598.9 2 279.5 459.2 512.4 582.8 1 285.0 464.7 522.9 590.8 <			
	B3LYP/DEF2	77.7	49.9	233.5	287.0	357.1
$H + N_{\alpha} + {}^{2}CCO^{+}$	B3LYP/AVTZ	2 -477.0 -504.8 -521.2 -267.7 -197.6 Z -465.5 -492.4 -313.8 -252.4 -187.6 -497.3 -510.0 -330.3 -277.1 -206.7 -496.6 -507.7 -328.0 -269.8 -201.9 2 77.5 49.9 233.5 287.0 357.1 Z 93.7 66.7 245.4 306.8 371.5 32.2 19.5 199.1 252.3 322.6 38.2 27.0 206.5 264.7 332.6 Z 117.5 65.3 75.3 77.8 80.4 Z 128.1 74.8 82.5 90.4 90.4 101.0 63.5 75.2 82.9 86.1 Z 75.3 43.7 160.8 168.8 170.2 Z 83.2 14.3 164.1 177.0 175.3 Z 83.2 14.3 164.1 177.0 175.3				
$\mathbf{n} + \mathbf{Ng} + \mathbf{CCO}$	MP2/DEF2	32.3	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			
$H + Ng + {}^{2}CCO^{+} $ $\frac{B3LYP/AVTZ}{MP2/DEF2} $ $\frac{B3LYP/AVTZ}{32}$ $\frac{B3LYP/DEF2}{30}$ $\frac{B3LYP/DEF2}{30}$			27.1	206.8	265.0	332.9
	B3LYP/DEF2	309.3	281.5	465.1	518.6	588.7
\mathbf{H}^+ + $\mathbf{N}_{\mathbf{a}}$ + ${}^3\mathbf{CCO}$	B3LYP/AVTZ	321.0	294.1	472.7	534.1	598.9
H + Ng + CCO	MP2/DEF2	292.2	279.5	459.2	512.4	582.8
	MP2/AVTZ	2 309.3 281.5 465.1 518.6 588.7 Z 321.0 294.1 472.7 534.1 598.9 2 292.2 279.5 459.2 512.4 582.8 Z 296.1 285.0 464.7 522.9 590.8 2 24.3 1.5 26.4 34.0 42.1				
	B3LYP/DEF2	24.3	1.5	26.4	34.0	42.1
Bannian Uaight ^a	B3LYP/AVTZ	34.5	11.0	34.0	46.3	52.1
Darrier Height	MP2/DEF2	8.8	0.2	19.7	28.1	37.9
	MP2/AVTZ	8.8	0.2	19.2	30.8	39.2

^aBarrier Height corresponding to TS (Transition State), (HNgCCO⁺ \rightarrow HCCO⁺ + Ng).

Table S4. Harmonic Vibrational Frequencies (in cm⁻¹) Calculated Using MP2 Method using DEF2 and AVTZ Basis Sets for the Minima Structures of ³HNgCCO⁺ (Ng = He, Ne, Ar, Kr, and Xe) Compounds. Corresponding IR Values are Given within the Parentheses (in km mol⁻¹).

Normal Modes	Methods	³ HHeCCO ⁺	³ HNeCCO ⁺	³ HArCCO ⁺	³ HKrCCO ⁺	³ HXeCCO ⁺
	DEF2	3436.1 (214.9)	2981.4 (760.1)	2731.7 (248.0)	2514.2 (93.4)	2294.7 (13.4)
H–Ng Str.	AVTZ	3437.1 (215.0)	3018.4 (751.4)	2745.5 (247.2)	2517.4 (77.3)	2300.2 (11.5)
	DEF2	407.6 (345.8)	176.0 (46.4)	159.4 (35.8)	140.5 (22.2)	134.9 (20.2)
Ng-C Str.	AVTZ	414.9 (345.1)	178.9 (42.7)	159.9 (34.7)	146.2 (22.9)	137.5 (20.4)
	DEF2	1144.1 (33.0)	1120.4 (2.3)	1127.4 (8.7)	1128.7 (12.0)	1130.6 (16.8)
C-C Str.	AVTZ	1134.9 (35.5)	1111.5 (2.6)	1116.3 (8.5)	1126.6 (13.1)	1120.8 (18.1)
C–O Str.	DEF2	2085.0 (167.5)	2070.6 (165.8)	2075.3 (177.0)	2076.8 (4.4)	2078.2 (194.4)
	AVTZ	2083.7 (170.1)	2069.0 (168.5)	2073.3 (180.2)	2074.7 (185.4)	2077.5 (199.7)
	DEF2	473.6 (187.0)	115.0 (331.0)	388.7 (121.3)	400.8 (83.7)	402.5 (38.9)
H–Ng–C Bend ^a	AVTZ	481.8 (169.9)	114.7 (328.2)	378.7 (119.9)	414.9 (82.3)	406.9 (47.9)
Ng-C-C Bend ^a	DEF2	124.3 (82.9)	83.5 (0.4)	85.7 (10.2)	81.4 (5.8)	82.0 (2.8)
	AVTZ	124.1 (85.2)	83.9 (1.2)	85.1 (10.4)	82.6 (5.3)	81.4 (2.6)
	DEF2	487.1 (18.4)	469.4 (0.8)	479.5 (13.7)	481.4 (9.3)	484.3 (11.3)
C-C-O Bend"	AVTZ	492.9 (32.1)	469.0 (31.0)	477.1 (13.4)	482.4 (6.7)	484.8 (9.6)

^aIt is doubly degenerate mode for minima energy structure.

Table S5. Harmonic Vibrational Frequencies (in cm⁻¹) Calculated Using B3LYP Method using DEF2 and AVTZ Basis Sets for the Minima Structures of ³HNgCCO⁺ (Ng = He, Ne, Ar, Kr, and Xe) Compounds. Corresponding IR Intensity and Raman Intensity Values are Given within the Parentheses (in km mol⁻¹) and in Square Brackets (in Å⁴ amu⁻¹), respectively.

Normal Modes	Methods	³ HHeCCO ⁺	³ HNeCCO ⁺	³ HArCCO ⁺	³ HKrCCO ⁺	³ HXeCCO ⁺
	DEF2	2849.5 (125.3)	2512.5 (42.0)	2508.1 (6.4)	2322.0 (0.02)	2149.7 (2.0)
		[3054.5]	[] ^b	[2652.0]	[1988.6]	[1373.2]
H–Ng Str.	AVTZ	2700.8 (398.0)	2363.8 (544.3)	2477.0 (0.1)	2291.3 (4.4)	2133.6 (6.7)
		[6348.9]	[] ^b	[3979.9]	[2437.8]	[1664.5]
	DEF2	459.2 (348.1)	185.1 (57.3)	165.4 (41.1)	144.0 (23.5)	135.6 (18.8)
No. C Sta		[24.5]	[] ^b	[0.3]	[0.2]	[0.3]
Ng-C Str.	AVTZ	460.8 (335.6)	186.9 (57.6)	162.9 (40.2)	148.3 (24.1)	136.9 (19.0)
		[53.0]	[] ^b	[0.3]	[0.3]	[0.2]
	DEF2	1183.8 (11.8)	1148.5 (1.9)	1157.4 (0.4)	1159.4 (0.8)	1161.0 (1.5)
C–C Str.		[10.6]	[] ^b [32.7]		[41.0]	[56.0]
	AVTZ	1189.3 (7.8)	1155.4 (5.8)	1161.6 (0.01)	1167.7 (0.4)	1167.3 (0.8)
		[2.3]	[] ^b	[27.1]	[36.7]	[49.8]
C–O Str.	DEF2	2113.8 (204.1)	2093.1 (2.8)	2098.7 (219.0)	2100.4 (226.5)	2102.1 (241.0)
		[14.5]	[] ^b	[8.3]	[8.1]	[5.9]
	AVTZ	2077.8 (170.4)	2062.4 (210.5)	2065.5 (169.7)	2068.6 (174.6)	2068.9 (185.8)
		[7.8]	[] ^b	[9.2]	[11.8]	[10.1]
	DEF2	639.8 (141.2)	196.4 (281.0)	430.8 (121.5)	422.8 (80.7)	408.2 (37.0)
Ng-C Str. C-C Str. C-O Str. H-Ng-C Bend ^a Ng-C-C Bend ^a		[2.5]	[] ^b	[0.01]	[0.002]	[0.01]
II-Ng-C Della	AVTZ	482.6 (35.4)	211.6 (271.8)	419.4 (122.0)	435.2 (82.2)	412.8 (39.4)
H–Ng–C Bend ^a		[0.7]	[] ^b	[0.0]	[0.03]	[0.03]
Ng–C–C Bend ^a	DEF2	117.2 (64.3)	81.4 (13.5)	83.9 (6.8)	88.5 (3.2)	78.2 (1.4)
		[0.2]	[] ^b	[0.4]	[0.3]	[0.3]
	AVTZ	122.6 (63.5)	84.8 (14.0)	83.7 (7.1)	82.4 (3.0)	79.2 (1.4)
		[0.0]	[] ^b	[0.3]	[0.2]	[0.3]
	DEF2	480.1 (28.6)	468.0 (523.5)	478.5 (4.5)	479.3 (6.4)	480.2 (10.4)
C_C_O Bonda		[0.04]	[] ^b	[0.5]	[0.5]	[0.6]
	AVTZ	655.4 (138.2)	465.9 (29.5)	474.3 (4.7)	482.0 (0.8)	479.8 (7.5)
		[2.7]	$\left[\ldots\right]^{\mathrm{b}}$	[0.9]	[0.8]	[0.8]

^aIt is doubly degenerate mode for minima energy structure.

^b It has not been possible to calculate the Raman intensity for ³HNeCCO⁺ ion by using B3LYP method with both DEF2 and AVTZ basis sets due to convergence problem.

Table S6. Harmonic Vibrational Frequencies (in cm⁻¹) Calculated Using B3LYP and MP2 Methods using DEF2 and AVTZ Basis Sets for the Transition State (TS) Structures of ³HNgCCO⁺ (Ng = He, Ne, Ar, Kr, and Xe) Compounds. Corresponding IR Intensity Values are Given within the Parentheses (in km mol⁻¹).

Normal	Methods	³ HHeCCO ⁺	³ HNeCCO ⁺	³ HArCCO ⁺	³ HKrCCO ⁺	³ HXeCCO ⁺
Modes						
	B3LYP/DEF2	3093.0 (456.5)	2613.4 (172.6)	2269.0 (473.3)	2472.8 (343.0)	2269.8 (193.3)
Normal Modes H–Ng Str. Ng–C Str. C–C Str. C–O Str. H–Ng–C Bend Ng–C–C Bend	B3LYP/AVTZ	3121.1 (411.6)	2644.3 (162.2)	2664.1 (465.1)	2459.9 (341.7)	2260.0 (197.7)
H-Ng Str.	MP2/DEF2	3506.0 (748.3)	2986.0 (794.6)	2772.1 (543.0)	2574.6 (383.2)	2364.2 (214.0)
	MP2/AVTZ	3519.2 (739.0)	3024.7 (14.0)	2789.8 (528.1)	2581.5 (374.1)	2366.1 (213.0)
	B3LYP/DEF2	385.5 (280.2)	181.9 (63.0)	119.2 (24.7)	94.0 (10.8)	79.2 (6.4)
	B3LYP/AVTZ	388.1 (282.5)	184.1 (64.9)	119.1 (24.5)	94.8 (10.9)	79.6 (6.4)
Ng-C Str.	MP2/DEF2	376.6 (287.1)	175.9 (56.8)	125.3 (24.6)	101.0 (10.7)	88.0 (6.3)
H-Ng Str.	MP2/AVTZ	384.0 (289.1)	179.4 (0.7)	128.0 (24.3)	103.9 (10.7)	89.0 (6.4)
	B3LYP/DEF2	1134.3 (33.1)	1144.2 (1.7)	1127.6 (0.6)	1124.0 (0.9)	1120.3 (1.3)
C C Str	B3LYP/AVTZ	1133.3 (29.5)	1142.6 (1.6)	1125.5 (0.7)	1122.1 (0.9)	1118.2 (1.3)
C-C Str.	MP2/DEF2	1119.4 (22.0)	1112.1 (2.6)	1100.8 (1.8)	1097.2 (1.3)	1094.1 (1.0)
	MP2/AVTZ	1116.6 (23.1)	1110.0 (2.6)	1097.5 (1.8)	1094.1 (1.4)	1090.5 (1.0)
	B3LYP/DEF2	2095.7 (377.1)	2091.6 (212.8)	2082.4 (208.5)	2079.7 (210.7)	2076.9 (216.7)
C–O Str.	B3LYP/AVTZ	2092.0 (352.9)	2086.9 (210.1)	2077.1 (206.1)	2075.4 (209.3)	2072.3 (215.4)
	MP2/DEF2	2081.2 (172.7)	2072.2 (168.4)	2066.9 (169.7)	2064.8 (172.6)	2062.8 (177.7)
	MP2/AVTZ	2077.9 (173.1)	2068.8 (168.0)	2063.4 (170.0)	2061.5 (173.2)	2059.3 (178.7)
	B3LYP/DEF2	-929.4 (100.8)	-268.6 (232.8)	-294.9 (88.6)	-255.6 (63.1)	-222.6 (31.6)
H–Ng–C	B3LYP/AVTZ	-921.3 (95.7)	-245.3 (230.4)	-290.4 (92.0)	-257.9 (60.0)	-222.3 (31.8)
Bend	MP2/DEF2	-613.6 (107.7)	-148.8 (278.6)	-281.2 (101.2)	-256.1 (70.4)	-231.1 (34.1)
	MP2/AVTZ	-618.8 (105.7)	-144.1 (277.6)	-285.8 (94.9)	-261.5 (67.1)	-229.6 (33.2)
	B3LYP/DEF2	126.5 (63.7)	82.5 (19.4)	75.8 (5.7)	71.0 (3.0)	66.3 (1.8)
Ng-C-C	B3LYP/AVTZ	124.6 (63.9)	83.1 (21.7)	74.9 (5.7)	70.8 (2.7)	65.6 (1.7)
Bend	MP2/DEF2	121.8 (80.0)	87.9 (36.4)	79.4 (7.9)	74.5 (4.3)	69.3 (2.8)
	MP2/AVTZ	121.9 (79.2)	85.9 (35.2)	75.9 (7.6)	71.3 (4.1)	66.3 (2.7)
	B3LYP/DEF2	484.2 (37.7)	467.9 (31.7)	461.7 (30.3)	457.6 (29.5)	452.8 (28.5)
С–С–О	B3LYP/AVTZ	483.0 (37.0)	467.4 (31.8)	460.6 (30.3)	457.2 (29.3)	452.2 (28.5)
Bend	MP2/DEF2	486.2 (38.4)	470.5 (33.8)	464.5 (30.1)	460.0 (28.8)	455.7 (27.7)
	MP2/AVTZ	484.8 (38.1)	469.2 (31.7)	462.8 (29.6)	459.4 (28.2)	455.1 (27.6)
	B3LYP/DEF2	137.0 (165.1)	75.7 (88.6)	77.2 (14.5)	71.5 (6.7)	65.8 (2.5)
H–Ng–C–C	B3LYP/AVTZ	135.8 (164.6)	91.4 (87.9)	76.0 (15.8)	71.1 (6.8)	65.3 (2.6)
Tors.	MP2/DEF2	127.8 (160.7)	89.8 (78.1)	78.7 (15.4)	73.3 (8.1)	68.2 (3.6)
	MP2/AVTZ	128.5 (159.5)	87.8 (77.5)	76.5 (16.9)	72.2 (7.9)	66.7 (3.3)

Page S8 of S10

Table S7. Harmonic Vibrational Frequencies (in cm⁻¹) and Intrinsic Force Constants in the Parentheses (in N m⁻¹) Corresponding to Individual Internal Coordinates in the ³HNgCCO⁺ (Ng = He, Ne, Ar, Kr, and Xe) Ions, Calculated using B3LYP and MP2 Methods with DEF2 and AVTZ Basis Sets.

Int Coord	Methods	³ HHeCCO ⁺	³ HNeCCO ⁺	³ HArCCO ⁺	³ HKrCCO ⁺	³ HXeCCO ⁺
	B3LYP/DEF2	2848.9 (385.0)	2513.9 (357.3)	2508.9 (364.6)	2322.4 (316.5)	2149.9 (272.5)
Int Coord H–Ng Str. Ng–C Str. C–C Str. C–O Str. H–Ng–C Bend ^a	B3LYP/AVTZ	2699.7 (345.8)	2365 (316.2)	2477.8 (355.6)	2291.9 (308.3)	2133.8 (268.3)
H–Ng Str.	MP2/DEF2	3433.0 (559.1)	2981.4 (502.4)	2732.2 (371.0)	2514.5 (371.0)	2294.9 (310.3)
	MP2/AVTZ	3434.1 (559.4)	3018.4 (515.0)	2745.9 (436.7)	2517.8 (372.0)	2300.4 (311.8)
	B3LYP/DEF2	531.2 (50.0)	239.6 (25.4)	243.1 (32.1)	235.5 (34.2)	233.4 (35.3)
Ng–C Str.	B3LYP/AVTZ	534.7 (50.6)	242.5 (26.0)	239.3 (31.1)	243.2 (36.6)	235.6 (36.0)
Ng–C Str.	MP2/DEF2	487.4 (42.0)	235.9 (24.6)	230.6 (30.8)	223.5 (30.8)	226.3 (33.2)
	MP2/AVTZ	494.4 (43.3)	239.8 (25.4)	230.7 (29.0)	232.2 (33.3)	229.7 (34.2)
	B3LYP/DEF2	1342.4 (637.1)	1323.3 (619.0)	1329.4 (624.8)	1331.1 (626.3)	1332.2 (627.4)
C–C Str.	B3LYP/AVTZ	1342.0 (636.6)	1326.7 (622.1)	1329.8 (625.3)	1334.2 (629.3)	1333.7 (628.8)
	MP2/DEF2	1308.8 (605.5)	1297.9 (595.5)	1302.0 (599.6)	1302.3 (599.1)	1302.6 (599.9)
	MP2/AVTZ	1295.8 (593.6)	1285.8 (584.5)	1287.8 (586.2)	1299.0 (596.4)	1289.3 (587.7)
C–O Str.	B3LYP/DEF2	1999.9 (1615.8)	1979.7 (1583.1)	1985.2 (1591.9)	1968.8 (1594.6)	1988.8 (1597.7)
	B3LYP/AVTZ	1965.4 (1560.5)	1949.1 (1534.6)	1952.4 (1539.9)	1955.3 (1544.5)	1956.2 (1545.7)
	MP2/DEF2	1973.1 (605.5)	1958.0 (1548.7)	1962.8 (1559.1)	1964.5 (1559.1)	1966.3 (1561.9)
	MP2/AVTZ	1974.6 (1575.1)	1959.0 (1550.2)	1963.8 (1557.8)	1962.6 (1556.0)	1968.5 (1565.3)
	B3LYP/DEF2	642.0	196.7	434.5	427.4	413.8
H–Ng–C	B3LYP/AVTZ	655.6	211.9	423.6	444.8	421.0
Bend ^a	MP2/DEF2	475.4	114.0	390.6	404.8	408.1
	MP2/AVTZ	488.1	114.1	380.6	419.8	413.6
	B3LYP/DEF2	147.5	131.6	141.4	137.3	135.8
Ng-C-C	B3LYP/AVTZ	172.1	141.3	146.2	145.1	142.5
Bend ^a	MP2/DEF2	175.0	140.8	147.9	143.7	146.7
	MP2/AVTZ	180.8	144.4	151.6	143.4	150.5
	B3LYP/DEF2	468.7	456.3	461.3	462.0	462.3
С-С-О	B3LYP/AVTZ	467.0	451.8	455.0	457.8	457.5
Bend ^a	MP2/DEF2	469.5	455.8	462.6	462.9	464.3
	MP2/AVTZ	468.6	454.3	458.7	463.4	462.1

^a It is doubly degenerate mode for minima energy structure.

Table S8. B3LYP and MP2 Calculated Values of the Mulliken Atomic Charges (in au) in the Minima and Transition State Structures of ³HNgCCO⁺ (Ng = He, Ne, Ar, Kr, and Xe) Ions using DEF2 (AVTZ) Basis Sets.

		q(I	<i>q</i> (H) <i>q</i> (Ng)		$q(C)^{a}$		$q(\mathbf{C})^{\mathbf{b}}$		<i>q</i> (O)		
Species I ³ HHeCCO - ³ HNeCCO ⁺ - ³ HArCCO ⁺ - ³ HKrCCO - ³ HKrCCO ⁺ - ³ HKrCCO ⁺ -	Methods	Min	TS	Min	TS	Min	TS	Min	TS	Min	TS
³ HHeCCO +		0.593	0.685	0.206	0.267	0.534	-0.456	0.815	0.580	-0.080	-0.077
	B3LYP	(0.527)	(0.575)	(0.262)	(0.357)	(-0.073)	(-0.254)	(0.294)	(0.381)	(-0.009)	(-0.059)
	MP2	0.652	0.731	0.202	0.255	-0.606	-0.496	0.795	0.558	-0.044	-0.048
		(0.611)	(0.632)	(0.237)	(0.326)	(-0.177)	(-0.331)	(0.293)	(0.360)	(0.037)	(0.012)
³ HNeCCO ⁺	D2I VD	0.603	0.625	0.341	0.329	-0.459	-0.451	0.637	0.602	-0.116	-0.105
	BSLYP	(0.595)	(0.652)	(0.354)	(0.308)	(-0.310)	(-0.262)	(0.435)	(0.361)	(-0.074)	(-0.058)
	MP2	0.671	0.661	0.309	0.330	-0.489	-0.456	0.587	0.555	-0.078	-0.089
		(0.648)	(0.682)	(0.361)	(0.315)	(-0.407)	(-0.352)	(0.414)	(0.343)	(-0.016)	(0.013)
³ HArCCO ⁺	D2I VD	0.341	0.490	0.171	0.459	-0.005	-0.307	0.639	0.471	-0.147	-0.114
	BOLYP	(0.266)	(0.346)	(0.617)	(0.625)	(-0.154)	(-0.191)	(0.306)	(0.281)	(-0.035)	(-0.062)
	MP2	0.542	0.534	0.315	0.419	-0.502	-0.289	0.707	0.416	-0.061	-0.081
		(0.314)	(0.383)	(0.613)	(0.595)	(-0.236)	(-0.238)	(0.286)	(0.251)	(0.023)	(0.009)
	D2I VD	0.462	0.453	0.433	0.486	-0.268	-0.276	0.476	0.442	-0.103	-0.105
³ HKrCCO	взгар	(0.146)	(0.259)	(0.734)	(0.714)	(-0.121)	(-0.181)	(0.281)	(0.278)	(-0.039)	(-0.069)
+	MD2	0.504	0.476	0.351	0.478	-0.282	-0.247	0.483	0.379	-0.056	-0.086
	MP2	(0.161)	(0.274)	(0.791)	(0.699)	(-0.224)	(-0.228)	(0.254)	(0.251)	(0.018)	(0.004)
	D2I VD	0.221	0.330	0.655	0.628	-0.354	-0.306	0.622	0.458	-0.144	-0.110
	DJLIF	(0.025)	(0.091)	(0.948)	(0.900)	(-0.246)	(-0.174)	(0.349)	(0.252)	(-0.076)	(-0.069)
IIACUU	MD2	0.331	0.363	0.661	0.607	-0.399	-0.266	0.456	0.380	-0.049	-0.084
	IVII 2	(-0.011)	(0.069)	(1.033)	(0.900)	(-0.353)	(-0.201)	(0.357)	(0.226)	(-0.026)	(0.006)

^aThis C atom is attached to Ng atom; ^bThis C atom is connected to O atom.