1 Cartesian coordinates of geometries

Figure 1: The equilibrium geometry of the T_d isomer of Bi₄ predicted at the CCSD(T)/cc-pVQZ-PP level of theory.

Table 1: Tetrahedral (T_d) Bi₄ cartesian coordinates of the CCSD(T)/cc-pVQZ-PP geometry in Å.

Atom	х	У	Z
Bi	0.0000000000	-1.5302363927	1.0820405299
Bi	0.0000000000	1.5302363927	1.0820405299
Bi	1.5302363927	0.0000000000	-1.0820405299
Bi	-1.5302363927	0.0000000000	-1.0820405299

Figure 2: The equilibrium geometry of the C_{2v} isomer of Bi₄ predicted at the CCSD(T)/cc-pVQZ-PP level of theory.

Table 2: Tetrahedral (C_{2v}) Bi₄ cartesian coordinates of the CCSD(T)/cc-pVQZ-PP geometry in Å.

Atom	х	У	Z
Bi	0.0000000000	-1.5758532126	-0.5093775319
Bi	0.0000000000	1.5758532126	-0.5093775319
Bi	2.2900687222	0.0000000000	0.5093775319
Bi	-2.2900687222	0.0000000000	0.5093775319

2 Absolute electronic energy focal point tables and corrections

Table 3: Valence focal point analysis of the absolute electronic energy of T_d Bi₄ in Hartrees. Delta (δ) denotes the change in relative energy (ΔE_e) with respect to the preceding level of theory.

	HF	$+\delta MP2$	$+\delta CCSD$	$+\delta(T)$	$+\delta T$	$+\delta(Q)$	$+\delta Q$
cc-pVDZ-PP	-854.2976737	-854.6516485	-854.6546264	-854.6834010	-854.6837169	-854.6898406	-854.6885150
cc-pVTZ-PP	-854.3244542	-854.7618166	-854.7618023	-854.8008450	-854.8003193	-854.8077054	[-854.8063798]
cc-pVQZ-PP	-854.3294516	-854.8071780	-854.7993980	-854.8429570	[-854.8424313]	[-854.8498174]	[-854.8484918]
cc-pV5Z-PP	-854.3302002	-854.8252684	-854.8116404	-854.8569174	[-854.8563917]	[-854.8637778]	[-854.8624522]
CBS	[-854.3303321]	[-854.8435949]	[-854.8238313]	[-854.8709109]	[-854.8703852]	[-854.8777713]	[-854.8764457]

 $\begin{array}{l} \Delta_{\mathrm{Bi}_4~(T_d),\mathrm{ZPVE,Harmonic}}[\mathrm{CCSD}(\mathrm{T})/\mathrm{cc}\text{-}\mathrm{pVQZ}\text{-}\mathrm{PP}] = 1.0397~\mathrm{kcal~mol^{-1}}\\ \Delta_{\mathrm{Bi}_4~(T_d),\mathrm{ZPVE,Anharmonic}}[\mathrm{CCSD}(\mathrm{T})/\mathrm{cc}\text{-}\mathrm{pVQZ}\text{-}\mathrm{PP}] = 1.0377~\mathrm{kcal~mol^{-1}}\\ \Delta_{\mathrm{Bi}_4~(T_d),\mathrm{DBOC}}[\mathrm{HF}/\mathrm{cc}\text{-}\mathrm{pVTZ}\text{-}\mathrm{PP}] = 0.507344872~\mathrm{kcal~mol^{-1}} \end{array}$

 $\Delta_{\text{Bi}_4 (T_d), \text{rel}}[\text{CCSD}(T)/\text{cc-pVTZ-PP}] = 35.764346293629 \text{ kcal mol}^{-1}$

Table 4: Valence focal point analysis of the absolute electronic energy of C_{2v} Bi₄ in Hartrees. Delta (δ) denotes the change in relative energy (ΔE_e) with respect to the preceding level of theory.

	HF	$+\delta MP2$	$+\delta CCSD$	$+\delta(T)$	$+\delta T$	$+\delta(\mathbf{Q})$	$+\delta Q$
cc-pVDZ-PP	-854.3716361	-854.7145861	-854.7207238	-854.7428023	-854.7424185	-854.7455414	-854.7450601
cc-pVTZ-PP	-854.3983828	-854.8286873	-854.8301955	-854.8633170	-854.8622740	-854.8665538	[-854.8660724]
cc-pVQZ-PP	-854.4020911	-854.8746103	-854.8683428	-854.9063030	[-854.9052600]	[-854.9095398]	[-854.9090584]
cc-pV5Z-PP	-854.4026046	-854.8930851	-854.8810427	-854.9208364	[-854.9197934]	[-854.9240732]	[-854.9235918]
CBS	[-854.4026871]	[-854.9120124]	[-854.8939110]	[-854.9356284]	[-854.9345853]	[-854.9388651]	[-854.9383838]

 $\begin{array}{l} \Delta_{\rm Bi_4\ (C_{2v}), \rm ZPVE, \rm Harmonic}[\rm CCSD(T)/cc-pVQZ-PP] = 0.8871\ kcal\ mol^{-1}\\ \Delta_{\rm Bi_4\ (C_{2v}), \rm DBOC}[\rm HF/cc-pVTZ-PP] = 0.517046279\ kcal\ mol^{-1}\\ \Delta_{\rm Bi_4\ (C_{2v}), \rm rel}[\rm CCSD(T)/cc-pVTZ-PP] = 35.762332985260\ kcal\ mol^{-1} \end{array}$

Table 5: Valence focal point analysis of the absolute electronic energy of Bi₂ in Hartrees. Delta (δ) denotes the change in relative energy (ΔE_e) with respect to the preceding level of theory.

	$_{ m HF}$	$+\delta MP2$	$+\delta CCSD$	$+\delta(T)$	$+\delta T$	$+\delta(\mathbf{Q})$	$+\delta Q$
cc-pVDZ-PP	-427.1375648	-427.3182280	-427.3219849	-427.3342986	-427.3346699	-427.3372520	-427.3368614
cc-pVTZ-PP	-427.1489818	-427.3650444	-427.3679834	-427.3848895	-427.3850675	-427.3881902	[-427.3877996]
cc-pVQZ-PP	-427.1510933	-427.3848200	-427.3841785	-427.4029479	[-427.4031259]	[-427.4062486]	[-427.4058580]
cc-pV5Z-PP	-427.1513961	-427.3929656	-427.3893783	-427.4088121	[-427.4089901]	[-427.4121128]	[-427.4117222]
CBS	[-427.1514468]	[-427.4012448]	[-427.3945668]	[-427.4146977]	[-427.4148757]	[-427.4179984]	[-427.4176078]

$$\begin{split} &\Delta_{\rm Bi_2,ZPVE,Harmonic}[\rm CCSD(T)/cc-pVQZ-PP] = 0.2641 kcal\ mol^{-1}\\ &\Delta_{\rm Bi_2,ZPVE,Anharmonic}[\rm CCSD(T)/cc-pVQZ-PP] = 0.2636 kcal\ mol^{-1}\\ &\Delta_{\rm Bi_2,DBOC}[\rm HF/cc-pVTZ-PP] = 0.147018442\ kcal\ mol^{-1}\\ &\Delta_{\rm Bi_2,rel}[\rm CCSD(T)/cc-pVTZ-PP] = 17.88241774\ kcal\ mol^{-1} \end{split}$$

Table 6: Valence focal point analysis of the absolute electronic energy of 2Bi in Hartrees. Delta (δ) denotes the change in relative energy (ΔE_e) with respect to the preceding level of theory.

	$_{ m HF}$	$+\delta MP2$	$+\delta CCSD$	$+\delta(T)$	$+\delta T$	$+\delta(Q)$	$+\delta Q$
cc-pVDZ-PP	-427.1819483	-427.2575190	-427.2774270	-427.2781610	-427.2783520	-427.2784115	-427.2784304
cc-pVTZ-PP	-427.1885840	-427.2884351	-427.3089095	-427.3121565	-427.3129013	-427.3129604	[-427.3129793]
cc-pVQZ-PP	-427.1890378	-427.3002333	-427.3186177	-427.3227303	[-427.3234751]	[-427.3235342]	[-427.3235531]
cc-pV5Z-PP	-427.1891071	-427.3043778	-427.3211040	-427.3255074	[-427.3262522]	[-427.3263113]	[-427.3263302]
CBS	[-427.1891196]	[-427.3086659]	[-427.3236524]	[-427.3283609]	[-427.3291057]	[-427.3291648]	[-427.3291837]

 $\Delta_{2Bi,rel}[CCSD(T)/cc-pVTZ-PP] = 17.87665078 \text{ kcal mol}^{-1}$

3 NBO analysis

NBO analysis transforms the computed wavefunction orbitals into natural bonding orbitals through the following process: input basis $AOs \rightarrow NAOs \rightarrow NHOs \rightarrow NBOs \rightarrow NLMOs$. For further information on these transformations, reference the NBO 6.0 manual at http://nbo.chem.wisc.edu/nbo6ab_man.pdf.

SECOND ORDER PERTURBATION THEORY ANALYSIS OF FOCK MATRIX IN NBO BASIS

Threshold for printing: 0.50 kcal/mol

within unit 1

Donor (L) NBO | Acceptor (NL) NBO | E(2) kcal/mol | E(NL)-E(L)a.u. | F(L,NL)a.u. 1. LP (1)Bi 1 | 16. BD*(1)Bi 3-Bi 4 | 2.30 | 0.35 | 0.026 2. LP (1)Bi 2 | 16. BD*(1)Bi 3-Bi 4 | 2.30 | 0.35 | 0.026 3. LP (1)Bi 3 | 13. BD*(1)Bi 1-Bi 4 | 0.850.50 | 0.018 3. LP (1)Bi 3 | 15. BD*(1)Bi 2-Bi 4 | 0.85 $0.50 \mid 0.018$ 4. LP (1)Bi 4 | 12. BD*(1)Bi 1-Bi 3 | 0.85 $0.50 \mid 0.018$ 4. LP (1)Bi 4 | 14. BD*(1)Bi 2-Bi 3 | 0.85 | 0.50 | 0.018 5. BD (1)Bi 1-Bi 2 | 12. BD*(1)Bi 1-Bi 3 | 6.85 | 0.28 | 0.039 5. BD (1)Bi 1-Bi 2 | 13. BD*(1)Bi 1-Bi 4 | 6.85 0.28 0.0395. BD (1)Bi 1-Bi 2 | 14. BD*(1)Bi 2-Bi 3 | 6.85 | 0.28 | 0.039 5. BD (1)Bi 1-Bi 2 | 15. BD*(1)Bi 2-Bi 4 | 6.85 | 0.28 | 0.039 5. BD (1)Bi 1-Bi 2 | 16. BD*(1)Bi 3-Bi 4 | 33.37 | 0.13 | 0.058 5. BD (1)Bi 1-Bi 2 21. RY (5)Bi 1 | 2.89 | 4.60 | 0.103 5. BD (1)Bi 1-Bi 2 23. RY (7)Bi 1 | 2.67 | 6.22 | 0.115 5. BD (1)Bi 1-Bi 2 30. RY (5)Bi 2 | 2.89 | 4.60 | 0.1035. BD (1)Bi 1-Bi 2 | 32. RY (7)Bi 2 | 2.71 | 6.28 | 0.1165. BD (1)Bi 1-Bi 2 | 35. RY (1)Bi 3 | 1.08 | 1.44 | 0.035 5. BD (1)Bi 1-Bi 2 36. RY (2)Bi 3 | 2.08 | 1.00 | 0.041 5. BD (1)Bi 1-Bi 2 38. RY (4)Bi 3 | 2.92 | 5.26 | 0.111 5. BD (1)Bi 1-Bi 2 40. RY (6)Bi 3 | 1.87 1.320.0445. BD (1)Bi 1-Bi 2 | 43. RY (9)Bi 3 | 2.77 3.30 0.0855. BD (1)Bi 1-Bi 2 44. RY (1)Bi 4 | 1.08 | 1.44 | 0.035 45. RY (2)Bi 4 | 2.08 | 1.00 | 5. BD (1)Bi 1-Bi 2 0.0415. BD (1)Bi 1-Bi 2 47. RY (4)Bi 4 | 2.92 | 5.26 0.111 5. BD (1)Bi 1-Bi 2 49. RY (6)Bi 4 | 1.87 | 1.32 | 0.044 5. BD (1)Bi 1-Bi 2 52. RY (9)Bi 4 | 2.73 | 3.10 | 0.082 6. BD (1)Bi 1-Bi 3 | 14. BD*(1)Bi 2-Bi 3 | 0.51 | 0.30 | 0.011 6. BD (1)Bi 1-Bi 3 | 16. BD*(1)Bi 3-Bi 4 | 1.64 | 0.15 | 0.014 6. BD (1)Bi 1-Bi 3 30. RY (5)Bi 2 | 0.55 | 4.62 | 0.045 6. BD (1)Bi 1-Bi 3 | 32. RY (7)Bi 2 | 0.52 | 6.30 | 0.051 7. BD (1)Bi 1-Bi 4 | 15. BD*(1)Bi 2-Bi 4 | 0.51 | 0.30 | 0.011 7. BD (1)Bi 1-Bi 4 | 16. BD*(1)Bi 3-Bi 4 | 1.64 | 0.15 | 0.014 7. BD (1)Bi 1-Bi 4 30. RY (5)Bi 2 | 0.55 | 4.62 | 0.045 7. BD (1)Bi 1-Bi 4 | 32. RY (7)Bi 2 | 0.52 | 6.30 | 0.051 8. BD (1)Bi 2-Bi 3 | 12. BD*(1)Bi 1-Bi 3 | 0.51 | 0.30 | 0.011 8. BD (1)Bi 2-Bi 3 | 16. BD*(1)Bi 3-Bi 4 | 1.64 | 0.15 | 0.014 8. BD (1)Bi 2-Bi 3 | 21. RY (5)Bi 1 | 0.55 | 4.62 | 0.045 8. BD (1)Bi 2-Bi 3 | 23. RY (7)Bi 1 | 0.52 | 6.23 | 0.051 9. BD (1)Bi 2-Bi 4 | 13. BD*(1)Bi 1-Bi 4 | 0.51 | 0.30 | 0.011 9. BD (1)Bi 2-Bi 4 | 16. BD*(1)Bi 3-Bi 4 | 1.64 | 0.15 | 0.014 9. BD (1)Bi 2-Bi 4 | 21. RY (5)Bi 1 | 0.55 | 4.62 | 0.045 9. BD (1)Bi 2-Bi 4 | 23. RY (7)Bi 1 | 0.52 | 6.23 | 0.051 10. BD (1)Bi 3-Bi 4 | 12. BD*(1)Bi 1-Bi 3 | 9.59 | 0.15 | 0.034 10. BD (1)Bi 3-Bi 4 | 13. BD*(1)Bi 1-Bi 4 | 9.59 | 0.15 | 0.034 10. BD (1)Bi 3-Bi 4 | 14. BD*(1)Bi 2-Bi 3 | 9.59 | 0.15 | 0.034 10. BD (1)Bi 3-Bi 4 | 15. BD*(1)Bi 2-Bi 4 | 9.59 | 0.15 | 0.034 10. BD (1)Bi 3-Bi 4 | 17. RY (1)Bi 1 | 0.68 | 0.65 | 0.019 10. BD (1)Bi 3-Bi 4 | 26. RY (1)Bi 2 | 0.68 | 0.65 | 0.01910. BD (1)Bi 3-Bi 4 | 35. RY (1)Bi 3 | 5.31 | 1.32 | 0.07510. BD (1)Bi 3-Bi 4 | 36. RY (2)Bi 3 | 3.53 | 0.880.05010. BD (1)Bi 3-Bi 4 | 38. RY (4)Bi 3 | 6.09 | 5.14 0.15810. BD (1)Bi 3-Bi 4 | 40. RY (6)Bi 3 | 2.21 | 1.20 | 0.04610. BD (1)Bi 3-Bi 4 | 41. RY (7)Bi 3 | 1.67 | 0.750.03210. BD (1)Bi 3-Bi 4 | 43. RY (9)Bi 3 | 4.89 | 3.170.11110. BD (1)Bi 3-Bi 4 | 44. RY (1)Bi 4 | 5.31 | 1.32 | 0.075 10. BD (1)Bi 3-Bi 4 | 45. RY (2)Bi 4 | 3.53 | 0.88 | 0.050

10. BD (1) Bi 3-Bi 4 | 47. RY (4) Bi 4 | 6.09 | 5.14 | 0.158
10. BD (1) Bi 3-Bi 4 | 49. RY (6) Bi 4 | 2.21 | 1.20 | 0.046
10. BD (1) Bi 3-Bi 4 | 50. RY (7) Bi 4 | 2.05 | 0.88 | 0.038
10. BD (1) Bi 3-Bi 4 | 51. RY (8) Bi 4 | 1.43 | 0.96 | 0.033
10. BD (1) Bi 3-Bi 4 | 52. RY (9) Bi 4 | 4.63 | 2.97 | 0.105

NATURAL BOND ORBITALS (Summary):

Principal Delocalizations NBO Occupancy Energy (geminal,vicinal,remote)

Molecular unit 1 (Bi4)
Lewis
1. LP (1)Bi $1 \mid 1.98574 \mid -0.50270 \mid 16(v)$
2. LP (1)Bi 2 1.98574 -0.50270 $16(v)$
3. LP (1)Bi 3 1.98574 -0.49342 13(v),15(v)
4. LP (1)Bi 4 1.98574 -0.49342 12(v),14(v)
5. BD (1)Bi 1-Bi 2 1.60131 -0.27584 16(v),12(g),13(g),14(g)
15(g),38(v),47(v),21(g)
30(g),43(v),52(v),32(g)
23(g),36(v),45(v),40(v)
49(v),35(v),44(v)
6. BD (1)Bi 1-Bi 3 1.92844 -0.29491 $16(g),30(v),32(v),14(g)$
7. BD (1)Bi 1-Bi 4 1.92844 -0.29491 $16(g),30(v),32(v),15(g)$
8. BD (1)Bi 2-Bi 3 1.92844 -0.29491 $16(g),21(v),23(v),12(g)$
9. BD (1)Bi 2-Bi 4 1.92844 -0.29491 $16(g), 21(v), 23(v), 13(g)$
10. BD (1)Bi 3-Bi 4 1.80488 -0.15072 $12(g), 13(g), 14(g), 15(g)$
38(g), 47(g), 35(g), 44(g)
43(g),52(g),50(g),40(g) 40(r),40(r),50(r),41(r)
40(g), 49(g), 50(g), 41(g) 51(a) 17(a) 26(a)
$\operatorname{pop} \operatorname{Louis}_{\mathcal{O}}$
NBO Occupancy Energy
11 BD*(1)Bi 1-Bi 2 $ $ 0 01125 $ $ -0 04348
12. $BD^{*}(1)Bi 1 - Bi 3 0.09138 0.00398$
13. $BD^*(1)Bi 1-Bi 4 0.09138 0.00398$
14. BD*(1)Bi 2-Bi 3 0.09138 0.00398
15. BD*(1)Bi 2-Bi 4 0.09138 0.00398
16. BD*(1)Bi 3-Bi 4 0.53998 -0.14802
17. RY (1)Bi 1 0.00220 0.50324
18. RY (2)Bi 1 0.00153 0.52046
19. RY (3) Bi 1 0.00104 0.51990
20. RY (4)Bi 1 0.00025 0.66575
21. RY (5)Bi 1 0.00003 4.32517
22. RY (6)Bi 1 0.00000 0.62008
23. RY (7)Bi 1 0.00000 5.93928
24. RY (8)B1 1 0.00000 0.77505
25. RY (9)B1 1 0.00000 0.49016 26. DV (1)D: 2 0.00200 0.50224
20. R1 (1)D1 2 0.00220 0.30524 27. DV (2)D; 2 0.00152 0.50046
27. RT (2)D12 0.00103 0.02040 28. RV (3)Ri 2 0.00104 0.51000
20. RV (4)Bi 2 0.00104 0.01330 29. RV (4)Bi 2 0.00025 0.66575
30. RY (5)Bi 2 $ $ 0.00003 $ $ 4.32517
31. RY (6)Bi 2 0.00000 0.59523

32. RY (7)Bi 2 | 0.00000 | 6.00251

33.	RY (8)Bi 2	0.00000	0.77505
34.	RY (9)Bi 2	0.00000	0.45177
35.	RY (1)Bi 3	0.00370	1.16869
36.	RY (2)Bi 3	0.00072	0.72609
37.	RY (3)Bi 3	0.00056	0.46244
38.	RY (4)Bi 3	0.00012	4.98753
39.	RY (5)Bi 3	0.00002	0.52181
40.	RY (6)Bi 3	0.00000	1.04704
41.	RY (7)Bi 3	0.00000	0.60360
42.	RY (8)Bi 3	0.00000	0.73165
43.	RY (9)Bi 3	0.00000	3.02157
44.	RY (1)Bi 4	0.00370	1.16869
45.	RY (2)Bi 4	0.00072	0.72609
46.	RY (3)Bi 4	0.00056	0.46244
47.	RY (4)Bi4	0.00012	4.98753
48.	RY (5)Bi 4	0.00002	0.52181
49.	RY (6)Bi4	0.00000	1.04704
50.	RY (7)Bi 4	0.00000	0.72738
51.	RY (8)Bi 4	0.00000	0.80916
52.	RY (9)Bi 4	0.00000	2.82028

Total Lewis 331.06290 (99.7177%) Valence non-Lewis 0.91677 (0.2761%) Rydberg non-Lewis 0.02034 (0.0061%)

Total unit 1 332.00000 (100.0000%) Charge unit 1 0.00000

3.1 NBO input file

Below is the input file used to run the NBO computations for the C2v structure utilizing Qchem 5.0. \$comment Bi4 C2V NBO Analysis

\$end

\$molecule
0 1
BI 0.0000000000 -1.5758532126 -0.5093775319
BI 0.0000000000 1.5758532126 -0.5093775319
BI 2.2900687222 0.0000000000 0.5093775319
BI -2.2900687222 0.0000000000 0.5093775319
\$end

```
$rem
jobtype sp
exchange b3lyp
basis srlc
MAX_SCF_CYCLES 200
ecp srlc
NBO 1
RUN_NBO6 1
MEM_TOTAL 2000
$end
```

\$nbo nrt \$end

(a) The Lewis NBO of the C_{2v} isomer.

(b) The non-Lewis, long-bonding NBO of the \mathcal{C}_{2v} isomer.