Supporting Information

Polymer assisted drug sequestration from plasma protein by surfactant with curtailed denaturing capacity

Aruna K. Mora, Arghyadeep Basu, Rahul Kalel, and Sukhendu Nath

Derivation of equations 3 & 6

Binding of a ligand (L) with protein (P) can be represented by following equation.

$$P + L \rightleftharpoons PL$$
 (S1)

The dissociation constant (K_d) for complex PL is defined as

$$K_d = \frac{[L][P]}{[PL]} \tag{S2}$$

where [L], [P] and [PL] are concentrations of free ligand, free protein and protein-ligand complex. If the total concentration of the ligand is $[L]_0$, then the concentration of protein bound ligand, $[L]_b$, is given by

$$[L]_b = [L]_0 - [L]$$
(S3)

Further, if the number of equivalent binding sites in protein for ligand L is n, then $[L]_b$ and [PL] are related by following equation.

$$[L]_b = n \ [PL] \tag{S4}$$

Substituting the value of [PL] from eq. S2

$$[L]_b = n \frac{[L][P]_0}{K_d + [L]}$$
(S5)

where $[P]_0$ is total concentration of protein.

Substituting the value of [L] from eq. S3 into eq. S5

$$[L]_b^2 - [L]_b (n[P]_0 + K_d + [L]_0) + n[P]_0 [L]_0 = 0$$
(S6)

The solution of $[L]_b$ is given by

$$[L]_b = \frac{b - \sqrt{b^2 - 4c}}{2}$$
(S7)

where b and c are given by

$$b = n[P]_0 + K_d + [L]_0$$
(S8)

$$c = n[P]_0[L]_0 \tag{S9}$$

Estimation of K_d *by absorption measurements*: The total absorbance (A_{λ}) at wavelength λ is given by

$$A_{\lambda} = \epsilon[L] + \epsilon_b[L]_b \tag{S10}$$

Where ϵ and ϵ_b are the molar extinction coefficient of free and protein bound ligands. It is assumed that there is no absorption at wavelength λ due to protein and the optical path is 1 cm. Substituting the value of [L] and [L]_b from eq. S3 and S7, respectively in eq. S10.

$$A_{\lambda} = \epsilon [L]_0 + (\epsilon_b - \epsilon) \frac{b - \sqrt{b^2 - 4c}}{2}$$
(S11)

Thus, for estimation of K_d , total absorbance, A_{λ} , are measured for ligand in presence of different concentrations of protein, $[P]_0$. The non-linear fitting of the experimental data by eq. S11 results the value of K_d , n and ϵ_b .

Estimation of K_d *by emission measurements*: Total emission intensity at wavelength λ (I $_{\lambda}$) is given by

$$I_{\lambda} = F[L] + F_b[L]_b \tag{S12}$$

where F and F_b are the molar fluorescence intensity at λ for free and protein bound ligand. The emission from protein at λ is neglected. The value of F can be calculated by measuring emission intensity at λ for known concentration of free ligand in aqueous solution. Substituting the value of [L]and $[L]_b$ from eq. S3 and S7, respectively in eq. S12.

$$I_{\lambda} = F[L]_0 + (F_b - F)\frac{b - \sqrt{b^2 - 4c}}{2}$$
(S13)

Thus, variation of I_{λ} , with $[P]_0$ are fitted with eq. S13 to get values of K_d , n and F_b .

Figure S1-Optimized geometry of CCVJ in water obtained from quantum chemical calculations.

Figure S2- (A) Absorption and (B) emission spectra of 3.6 μM CCVJ in (1) water, (2) 0.6 mM CTAB, (3) 1% P123, (4) 1% P123+ 0.6 mM CTAB and (5) BSA + 1% P123 + 0.6 mM CTAB.

Deconvolution of emission spectrum: Following equation is used to deconvolute the emission spectra $(I(\lambda))$ of CCVJ in BSA-P123-CCVJ systems.

$$I(\lambda) = A_{BSA}I^{BSA}(\lambda) + A_{P123-CTAB}I^{P123-CTAB}(\lambda)$$
(S14)

where $I^{BSA}(\lambda)$ and $I^{P123-CCVJ}(\lambda)$ represent the emission spectra of 3.6 μ M CCVJ in BSA solution and in 1%P123-0.6 mM CTAB solution and parameters, A_{BSA} and $A_{P123-CCVJ}$ are their respective contribution towards the total emission spectrum, $I(\lambda)$. $I^{BSA}(\lambda)$ and $I^{P123-CCVJ}(\lambda)$ have been determined independently. All emission spectra of CCVJ in BSA-P123-CTAB solutions were fitted by eq. S14 using non-linear least square fitting method to get the values of A_{BSA} and $A_{P123-CCVJ}$.

Figure S3- (A) Deconvolution of emission spectra of CCVJ in BSA-P123 solution with 0.25 mM CTAB. The solid line is experimentally measured emission spectrum of CCVJ (I(λ)). The dashed and dotted spectra represent the emission spectra of CCVJ in BSA (I^{BSA}(λ)) and in P123-CTAB supramolecular assemblies (I^{P123-CCVJ}(λ)), respectively obtained by spectral deconvolution process. (B) The deconvoluted emission spectra of CCVJ in BSA (solid line) and in P123-CTAB supramolecular assemblies of CCVJ in BSA (solid line) and in P123-CTAB supramolecular assemblies (solid line) assemblies (solid line) and in P123-CTAB supramolecular assemblies (solid line) asolid line) assem

Figure S4: Near-UV CD spectra of BSA in (A) water and (B) 1% P123 solutions in presence of different concentrations of CTAB (1-4: 0, 0.2, 0.4 and 0.75 mM).