Supplementary Information

Formation of a Bi-rhodium Boron Tube Rh₂B₁₈ and Its Great CO₂ Capture Ability

Hung Tan Pham[#] and Minh Tho Nguyen^{&, \neq ,\$,*}

[&] Computational Chemistry Research Group, Ton Duc Thang University, Ho Chi Minh City, Vietnam

^{*≠*} Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam

[#] Institute for Computational Science and Technology (ICST), Ho Chi Minh City, Vietnam

[§] Department of Chemistry, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium

Email: nguyenminhtho@tdt.edu.vn; minh.nguyen@kuleuven.be

Table S1a. Electron density (ρ) and Laplacian ($\nabla^2 \rho$) calculated for bond critical point (BCP),

RCP	ρ	$\nabla^2 \rho$	BCP	ρ	$\nabla^2 \rho$
			Rh19 Rh20	0.071	0.10
B1 B2 Rh19					
B2 B3 Rh19	0.063		Rh19 B5		
B3 B4 Rh19			Rh19 B4		
B4 B17 Rh19			Rh19 B2		
B7 B8 Rh19			Rh19 B2		
B5 B17 Rh19			Rh19 B17		
B5 B6 Rh19			Rh19 B3		
B1 B8 Rh19			Rh19 B8		
B6 B7 Rh19		0.082	Rh19 B6		
B9 B10 Rh20		0.082	Rh19 B1	0.063	0.077
B10 B11 Rh20			Rh19 B7		
B11 B18 Rh20			Rh20 B18		
B12 B18 Rh20			Rh20 B15		
B12 B13 Rh20			Rh20 B9		
B15 B16 Rh20			Rh20 B14		
B13 B14 Rh20			Rh20 B16		
B9 B16 Rh20			Rh20 B13		
B14 B15 Rh20			Rh20 B10		
			Rh20 B10		
			Rh20 B12		
			Rh20 B11		

ring critical point (RCP) containing three centers of Rh_2B_{18} double ring structure.

Table S1a. Electron density (ρ) and Laplacian ($\nabla^2 \rho$) calculated for ring critical point (RCP)

containing five centers and cage critical point (CRP) of Rh₂B₁₈ double ring structure.

RCP	ρ	$\nabla^2 \rho$	
B1 B9 B16 Rh20 Rh19			
B3 B10 B11 Rh20 Rh19		0.086	
B3 B4 B11 Rh20 Rh19	0.03		
B5 B12 B17 Rh19 Rh20			
B6 B7 B14 Rh20 Rh19			
B7 B14 B15 Rh20 Rh19			
ССР	Density	Laplacian	
B3 B11 Rh20 Rh19	0.020	0.086	
B7 B14 Rh20 Rh19	0.050	0.080	

Structures		Cartersian Coordinate
Bructures	R	0.0000000 2.32570515 0.78392657
	R	-1 49493445 1 78159350 0 78392657
	B	-2 29037246 0 40385446 0 78392657
	B	2.27037240 0.40303440 $0.703920372.01411074$ 1.16285257 0.78302657
	B	0.705/3801 2.185//706 0.78302657
	B	0.75343801 - 2.18344750 - 0.78352057 2.01411074 - 1.16285257 - 0.78302657
	D	2.01411974 -1.10203237 0.70392037 2.20027246 0.40285446 0.78202657
	D	2.2903/240 0.40383440 0.78392037
	B	1.49493445 1.78139350 0.78392057
	B	-0.79545801 2.18544790 -0.78592057
	B	-2.014119/4 1.10285257 -0.78392057
	В	-2.2903/240 -0.40383440 -0.78392037
	В	-0.00000000 -2.32570515 -0.78392657
	В	1.49493445 -1.78159350 -0.78392657
18.A	В	2.29037246 -0.40385446 -0.78392657
	В	2.01411974 1.16285257 -0.78392657
	В	0.79543801 2.18544796 -0.78392657
	В	-0.79543801 -2.18544796 0.78392657
	В	-1.49493445 -1.78159350 -0.78392657
	Rh	-0.00000000 -0.00000000 1.27408400
	Rh	-0.00000000 -0.00000000 -1.27408400
	В	2.83797800 -1.02583800 0.12430700
	В	2.97454800 0.57487800 0.09493500
	В	2.01934500 1.80343900 0.43424100
	В	0.54307700 2.28449900 0.87705700
	В	-1.45077200 0.21419800 1.44589000
	В	-1.07480000 -1.38391200 1.49018400
	В	0.17472300 -2.21931300 1.02891000
	В	1.69103900 -2.05254100 0.52833000
	В	2.45043100 -0.22327500 -1.38577000
	В	2.11911800 1.32529400 -1.26525600
	В	0.84303500 2.17631900 -0.87584700
	В	-2.00455000 1.12188100 0.01075900
	В	-2.19494500 -0.75402400 0.24586300
	В	-0.98917000 -1.77052100 -0.21129000
	В	0.43328200 -2.25860000 -0.74443500
	В	1.84292900 -1.67996100 -1.18509900
1C.A	В	-0.82602900 1.69918400 1.38885500
	В	-0.64873500 1.95691600 -0.36012200
	C	-3.66585200 -0.25108900 -0.17957000
	0	-4.74661600 -0.71305400 -0.37510900
	0	-3.36522500 1.11968200 -0.37874500
	Rh	0.22779400 -0.02312200 -1.25814200
	Rh	0.73192400 0.00779700 1.23371200
	В	-3.17377000 -1.06050500 -0.22033000
	В	-1.89814800 -2.00765400 -0.46894900
	В	-0.29970600 -2.03615300 -0.36482200
	В	1.38760000 -2.02801000 -0.37867800
	В	0.75690400 0.68016000 1.09288800
X 🎽	В	-0.62766700 1.51079100 1.48187400
	В	-2.18001200 1.42918600 1.17910500
20 1	В	-3.15064000 0.37240700 0.49298800
2 U .A	В	-2.46775200 -0.91189700 -1.78562000

Table 2. Cartesian Coordinates of Rh_2B_{18} and Rh_2B_{18} -(CO₂)x with x = 1,2 and 3 (angstrom).

	В	-0.95992900 -1.43509700 -1.92616400
	В	0.60457000 -1.35883400 -1.73059200
	В	3.17482200 0.34540700 -1.16077100
	В	0.44674000 2.20190000 0.29274800
	В	-1.18717700 2.28314400 -0.02682100
	В	-2.54235100 1.65307800 -0.58872900
	В	-3.26995500 0.34779000 -1.23280500
	В	2.02595200 0.02125100 1.88631900
	В	1.79194500 -0.48638200 -0.87097700
	С	1.52659900 3.21690100 0.24756700
	С	2.40635700 -3.04782500 -0.05670100
	0	2.40820200 3.93704100 0.18083800
	0	4.15300800 1.02908600 -1.38210400
	0	2.92181000 -0.47910000 2.53824500
	0	3.24271000 -3.74494400 0.28744100
	Rh	-0.17335000 0.49096200 -0.92270300
	Rh	-1.32799900 -0.59216300 1.08950600
	В	2.08863500 -2.11375300 1.04399600
	В	2.10290400 -0.71174500 1.81193100
	В	1.50772000 0.52763900 1.07471100
	В	-0.29232300 1.12776300 1.20463500
	В	-1.75048000 0.24609000 0.50541600
	В	-2.00210600 -2.33421100 -0.01061100
	В	-0.60005700 -3.04165900 -0.12453900
	В	1.00395400 -3.01691400 0.23884700
	В	2.74534900 -0.60668300 0.08853000
	В	4.25354400 -0.02944700 -0.25634800
	В	0.87597300 1.67990000 0.02399200
	В	-1.56774900 2.29205400 -1.56682300
	В	-2.49377300 -0.92482500 -0.62189500
	B	-0.92494500 -1.45068600 -1.09080300
	В	0.49424700 -2.26264300 -1.22614700
• •	В	1.92900300 -1.82860500 -0.67236300
	В	-0.61149400 1.88022300 2.64530200
	В	-0.74534500 1.38800000 -0.47850300
	C	-3.63343900 -0.58112200 -1.52060000
	C	1.59742300 2.94510000 -0.26269200
3C.A	C	-2.85676200 0.44119700 1.49932700
	0	-4.53359100 -0.29608200 -2.15598500
	0	-2.21998400 2.86962500 -2.41294700
	0	5.33477200 0.44700500 -0.53165200
	0	2.18905400 3.88221000 -0.52841900
	0	-0.88169500 2.42189800 3.69439200
	0	-3./6094500 0.50/14900 2.19510300
	Kh	0.70086800 -0.05248500 -1.24938700
	Rh	-0.02819100 -1.04947000 0.95323700

Figure S1. The lower-lying isomers of $Rh_2B_9^-$ clusters. Geometry optimization and energy calculations were performed by using the TPSSh functional combining with 6-311+g(d) basis set for B and aug-cc-pVTZ-PP for Rh.

Figure S2. The shape and relative energy (kcal/mol) of lower-lying isomers of Rh2B18 cluster. Geometry optimization and energy calculations were performed by using the TPSSh functional combining with 6-311+g(d) basis set for B, C, O and aug-cc-pVTZ-PP for Rh.

 Rh_2B_{18}

Figure S3. The qualitative presence of orbital interaction between B_{18} tube and Rh_2 resulting Rh2B18 cluster.

Figure S4. The shape and relative energy of configuration of Rh_2B_{18} -CO₂. Geometry optimization and energy calculations were performed by using the TPSSh functional combining with 6-311+g(d) basis set for B, C, O and aug-cc-pVTZ-PP for Rh.

Figure S5. The shape and relative energy of configuration of Rh_2B_{18} -(CO₂)₂. Geometry optimization and energy calculations were performed by using the TPSSh functional combining with 6-311+g(d) basis set for B, C, O and aug-cc-pVTZ-PP for Rh.

Figure S6. The shape and relative energy of configuration of Rh_2B_{18} -(CO₂)₃. Geometry optimization and energy calculations were performed by using the TPSSh functional combining with 6-311+g(d) basis set for B, C, O and aug-cc-pVTZ-PP for Rh.

3C.D 18.6

Figure S7. The IR spectrum of 18.A. The frequeny calculations were performed by using the TPSSh functional combining with 6-311+g(d) basis set for B, C, O and aug-cc-pVTZ-PP for Rh.

Figure S8. The IR spectrum of 1C.A. The frequeny calculations were performed by using the TPSSh functional combining with 6-311+g(d) basis set for B, C, O and aug-cc-pVTZ-PP for Rh.

Figure S9. The IR spectrum of 2C.A. The frequeny calculations were performed by using the TPSSh functional combining with 6-311+g(d) basis set for B, C, O and aug-cc-pVTZ-PP for Rh.

Figure S10. The IR spectrum of 3C.A. The frequeny calculations were performed by using the TPSSh functional combining with 6-311+g(d) basis set for B, C, O and aug-cc-pVTZ-PP for Rh.

Figure S11. Reaction mode of transition structure 1C.TS

2C.D.TS1

2C.D.TS2

Figure S12. Reaction mode of a) 2C.D.TS1, 2C.D.TS2 and b) 2C.C.TS1 and 2C.C.TS2.

3C.TS1

3C.TS2

3C.TS3

2C.C

2C.D

2C.A

3C.A

Figure S14. The ELI_D surface maps plotted at the bifurcation value of 1.45 for 1C.A, 2C.A, 2C.C, 2C.D, 2C.E, 3C.A, 3C.B, 3C.A.