Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2018

Electronic Supplementary Information (ESI)

The effect of strain and functionalization on the optical properties of borophene

A. Mogulkoc*

Department of Physics, Faculty of Sciences, Ankara University, 06100, Tandogan, Ankara, Turkey

Y. Mogulkoc

Department of Physics Engineering, Faculty of Engineering, Ankara University, 06100, Tandogan, Ankara, Turkey

D. Kecik

UNAM - National Nanotechnology Research Center and Institute of Materials Science and Nanotechnology, Bilkent University, Ankara, 06800, Turkey and Department of Physics, Bilkent University, Ankara, 06800, Turkey

E. Durgun

UNAM - National Nanotechnology Research Center and Institute of Materials Science and Nanotechnology, Bilkent University, Ankara, 06800, Turkey (Dated: July 24, 2018)

FIG. S1: Variation of buckling length with uniaxial strain.

^{*}Electronic address: mogulkoc@science.ankara.edu.tr

FIG. S2: Frequency dependent imaginary dielectric function and optical conductivity for pristine and strained buckled-borophene.

FIG. S3: Frequency dependent imaginary dielectric function $(\varepsilon_2^z(\omega))$ for pristine and strained buckled-borophene along z-direction.

FIG. S4: Frequency dependent imaginary dielectric function $(\varepsilon_2^z(\omega))$ of BH, B₄F, and B₂F systems along z- direction.