Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2018

Supporting Information for

Is the Formation of *N*-heterocyclic carbenes (NHCs) a Feasible Mechanism for the Distillation of Imidazolium Ionic Liquids?

Júlia R. Diniz,¹ Tatiani B. de Lima,² Renan Galaverna,³ Aline L. de Oliveira,¹ Davi A. C. Ferreira,¹ Fabio C. Gozzo,²

Marcos N. Eberlin,³ Jairton Dupont,⁴ and Brenno A. D Neto*1

¹ Laboratory of Medicinal and Technological Chemistry, University of Brasilia (IQ-UnB). Campus Universitário Darcy Ribeiro, CEP 70904970, P.O.Box 4478, Brasilia-DF, Brazil.

² Institute of Chemistry, University of Campinas, Campinas, SP, Brazil.

³ ThoMSon Mass Spectrometry Laboratory, Institute of Chemistry, University of Campinas, Campinas, SP 13085-970 Brazil.

⁴ Institute of Chemistry, Federal University of Rio Grande do Sul, Porto Alegre, RS 91501-970, Brazil.

Summary

Figure S1. ¹ H NMR (D ₂ O) spectrum of 1a. A sealed TMSP capillary was used as internal reference
Figure S2. ¹³ C NMR (D ₂ O) spectrum of 1a. A sealed TMSP capillary was used as internal reference2
Figure S3. ¹ H NMR (D ₂ O) spectrum of 1b. A sealed TMSP capillary was used as internal reference
Figure S4. ¹³ C NMR (D ₂ O) spectrum of 1b. A sealed TMSP capillary was used as internal reference
Figure S5. ESI(-)-MS of 1a 4
Figure S6. APCI(-)-MS of 1a 4
Figure S7. ESI(-)-MS of 1b 5
Figure S8. APCI(-)-MS of 1b
Figure S9. APTDI(-)-MS of 1b
Figure S10. FTIR spectrum of 1a
Figure S11. FTIR spectrum of 1b
Table S1. Cartesian coordinates for the optimized Ion Pair. 7
Table S2. Cartesian coordinates for the optimized NHC. 8
Figure S12. Three-dimensional map of the electronic density for optimized Ion Pair. M06-2X/6-311++G(2d,2p)//B3LYP/6-31+G(d) (with the LANL2DZ basis set for In)10

Figure S1. ¹H NMR (D₂O, 300 MHz) spectrum of 1a. A sealed TMSP capillary was used as internal reference.

Figure S2. ¹³C NMR (D₂O, 75 MHz) spectrum of 1a. A sealed TMSP capillary was used as internal reference.

Figure S3. ¹H NMR (D₂O, 300 MHz) spectrum of 1b. A sealed TMSP capillary was used as internal reference.

Figure S4. ¹³C NMR (D₂O, 75 MHz) spectrum of 1b. A sealed TMSP capillary was used as internal reference.

Figure S5. ESI(-)-MS of 1a.

Figure S6. APCI(-)-MS of 1a.

Figure S7. ESI(-)-MS of 1b.

Figure S8. APCI(-)-MS of 1b. InCl₃ was detected as an anion radical.

Figure S9. APTDI(-)-MS of 1b.

Figure S10. FTIR spectrum of 1a.

Figure S11. FTIR spectrum of 1b.

B3LYP/6-31+G(d),

(with the LANL2DZ basis set for In)

Center	Atomic	Coordinates (Angstroms)			
Number	Number	Х	Y	Z	
1	6	3.036203	1.443506	-0.720169	
2	6	2.496904	2.649748	-0.924390	
3	7	1.704406	2.957144	0.013806	
4	6	1.793373	1.708012	0.935028	
5	7	2.609713	0.932257	0.356627	
6	6	0.906311	4.179376	0.187283	
7	6	3.009312	-0.386928	0.867482	
8	6	4.002578	-1.025138	-0.094620	
9	6	4.416584	-2.391885	0.434655	
10	6	5.409851	-3.030095	-0.527447	
11	1	3.755006	0.959571	-1.397760	
12	1	2.713076	3.290038	-1.792317	
13	1	1.256334	1.533694	1.894179	
14	1	0.320733	4.109867	1.131230	
15	1	1.584269	5.060723	0.235946	
16	1	0.210004	4.292885	-0.673554	
17	1	3.485107	-0.268676	1.866684	
18	1	2.110641	-1.037269	0.958124	
19	1	3.526784	-1.143389	-1.093821	
20	1	4.901249	-0.374796	-0.185262	
21	1	4.892379	-2.273633	1.433857	
22	1	3.517913	-3.042226	0.525297	
23	1	5.712404	-4.028906	-0.140656	

Standard Orientation:

24	1	4.934056 -3.148347 -1.526649
25	1	6.308521 -2.379754 -0.618089
26	49	1.964564 -0.407309 -0.035532
27	17	2.840405 -1.358562 2.092406
28	17	2.561241 -1.914118 -1.925929
29	17	0.512316 -0.195728 0.107292
30	17	-2.968927 1.839172 -0.415895

Table S2. Cartesian coordinates for the optimized NHC (from 1a).

B3LYP/6-31+G(d)

	Standard Orientation.			
Center	Atomic	Coordinates (Angstroms)		
Number	Number	Х	Y	Ζ
1	7	0.485051	0.387708	0.432550
2	6	1.335694	-0.688584	0.541528
3	7	2.517480	-0.339823	-0.064771
4	6	1.139243	1.428374	-0.275214
5	1	0.671004	2.370080	-0.494128
6	1	3.212371	1.472226	-1.094974
7	6	2.410885	0.978694	-0.578057
8	6	3.714979	-1.181462	-0.161269
9	1	3.980221	-1.373812	-1.215941
10	1	4.575386	-0.706574	0.342934
11	1	3.535793	-2.162429	0.328569
12	6	0.913287	0.420874	0.911692
13	6	1.873938	-0.090356	-0.172278
14	6	3.321187	-0.078799	0.336600
15	6	4.291417	-0.570023	-0.733954

Standard Orientation:

16	5	1	0.985940	-0.222701	1.825176
17	7	1	1.171109	1.457826	1.220162
18	3	1	1.588304	-1.121522	-0.469532
19)	1	1.785421	0.521782	-1.089901
20)	1	3.606184	0.941729	0.658746
21		1	3.409210	-0.719576	1.238213
22	2	1	4.064569	-1.596854	-1.045379
23	3	1	4.264457	0.058934	-1.630527
24	ł	1	5.323131	-0.566609	-0.362155

Figure S12. Three-dimensional map of the electronic density for optimized Ion Pair. M06-2X/6-311++G(2d,2p)//B3LYP/6-31+G(d) (with the LANL2DZ basis set for In).

Figure S13. Three-dimensional map of electronic density for optimized complexed NHC. M06-2X/311++G(2d, 2p)//B3LYP/6-31+G(d) (with the LANL2DZ basis set for In).