Electronic Supporting Information

Tuning Transition Metal Carbides Activity by Surface Metal Alloying: Case Study on CO₂ Capture and Activation

Martí López-Berbel,^a Luke Broderick, ^b John Carey, ^b Francesc Viñes, ^{a,*} Michael Nolan, ^{b*} and Francesc Illas^a

^a Departament de Ciència de Materials i Química Fisica & Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, Martí i Franqués 1-11, 08028 Barcelona, Spain.

^b *Tyndall National Institute, University College Cork, Cork T12R5CP, Munster, Ireland.* *Corresponding authors: francesc.vines@ub.edu, michael.nolan@tyndall.ie

Contents

Table S1 Bader charges on all bare surfaces.

Table S2 Binding modes, and adsorption energies with and without van der Waals corrections (vdW), as obtained PBE-D3, as well as geometry parameters, including CO₂ angle, C-C bond distances, d(C-C), and CO₂ molecule C-O bond distances, d(C-O).

Table S3 Bader charges for all the studied surfaces with adsorbed CO₂.

Fig. S1 Top view of the $(3\sqrt{2}\times 3\sqrt{2})R45^{\circ}$ model, the CO₂ was adsorbed both in the shown position but the dopant was moved from Near to Far position.

Fig. S2 Top view of the slab model used to represent a higher coverage situation.

Bare Surfaces								
Dopant	q ^{sur}	q^{sub}	\mathbf{q}^{TM}					
Ti	-1.70	-1.81	-					
Cr	-1.58	-1.64	+1.31					
Hf	-1.74	-1.90	+2.03					
Мо	-1.59	-1.61	+1.41					
Nb	-1.66	-1.76	+1.72					
Та	-1.70	-1.81	+1.91					
V	-1.64	-1.73	+1.56					
W	-1.63	-1.72	+1.69					
Zr	-1.68	-1.85	+1.78					

Table S1 Bader charges of all bare surfaces. q^{sur} is the computed charge of surface carbons directly bound to the dopant. q^{sub} is the computed charge on subsurface carbon. q^{TM} is the computed charge of the doping transition metal atom. All values are given in *e*.

CO ₂ Adsorption								
Dopant	Binding Mode	$E_{ads} (eV)$	E_{ads} vdW (eV)	CO ₂ angle (°)	d(C-C) (Å)	d(C-O) (Å)		
Ti	TopC TopC-adj	-0.61	-0.87	127.5	1.48	1.29		
	MMC	-0.63	-0.89	122.5	1.49	1.30		
Cr	TopC	-0.18	-0.47	126.2	1.51	1.25,1.32		
	TopC-adj	-0.62	-0.90	128.0	1.49	1.28		
	MMC	-0.23	-0.55	122.5	1.49	1.30,1.29		
Hf	TopC	-0.96	-1.20	126.0	1.49	1.28,1.30		
	TopC-adj	-0.56	-0.81	126.9	1.48	1.29		
	MMC	-0.81	-1.06	122.1	1.50	1.29,1.30		
Мо	TopC	-0.18	-0.45	127.8	1.49	1.29,1.28		
	TopC-adj	-0.39	-0.67	128.4	1.50	1.28		
	MMC	-0.13	-0.42	122.8	1.50	1.29		
Nb	TopC	-0.50	-0.76	127.0	1.49	1.28,1.29		
	TopC-adj	-0.40	-0.67	127.8	1.49	1.29		
	MMC	-0.42	-0.68	122.4	1.50	1.29,1.30		
Та	TopC	-0.57	-0.83	127.1	1.49	1.28,1.30		
	TopC-adj	-0.36	-0.61	128.0	1.50	1.29		
	MMC	-0.52	-0.78	122.1	1.50	1.29,1.30		
V	TopC	-0.28	-0.55	128.2	1.48	1.29,1.28		
	TopC-adj	-0.57	-0.82	127.9	1.49	1.29		
	MMC	-0.36	-0.63	122.6	1.49	1.30,1.29		
W	TopC	-0.22	-0.48	128.0	1.48	1.28,1.29		
	TopC-adj	-0.31	-0.57	128.6	1.50	1.28		
	MMC	-0.18	-0.45	122.4	1.50	1.29,1.30		
Zr	TopC	-0.93	-1.17	125.7	1.50	1.28,1.30		
	TopC-adj	-0.61	-0.86	126.5	1.47	1.29		
	MMC	-0.74	-0.98	122.3	1.50	1.29,1.30		

Table S2 Binding modes, and adsorption energies (E_{ads}) with and without van der Waals corrections (vdW), as obtained PBE-D3, as well as geometry parameters, including CO₂ angle, C-C bond distances, d(C-C), and CO₂ molecule C-O bond distances, d(C-O).

CO ₂ adsorbed									
Dopant	Binding Mode	$\mathbf{q}^{\mathrm{surf}}$	q ^{C-C}	q^{sub}	\mathbf{q}^{TM}	q^{CO_2}			
Ti	TopC TopC-adj	-1.67	-1.40	-1.81	-	-0.82			
	MMC	-1.65	-1.33	-1.83	+1.81	-0.86			
Cr	TopC	-1.54	-1.33	-1.64	+1.35	-0.76			
	TopC-adj	-1.54	-1.34	-1.61	+1.29	-0.78			
	MMC	-1.48	-1.27	-1.69	+1.35	-0.81			
Hf	TopC	-1.73	-1.32	-1.87	+2.18	-0.97			
	TopC-adj	-1.73	-1.40	-1.88	+2.01	-0.88			
	MMC	-1.72	-1.37	-1.88	+2.16	-0.90			
Мо	TopC	-1.56	-1.31	-1.65	+1.55	-0.83			
	TopC-adj	-1.55	-1.30	-1.58	+1.38	-0.85			
	MMC	-1.53	-1.29	-1.69	+1.53	-0.82			
	TopC	-1.65	-1.32	-1.79	+1.88	-0.87			
Nb	TopC-adj	-1.64	-1.35	-1.74	+1.73	-0.87			
	MMC	-1.62	-1.32	-1.81	+1.84	-0.85			
	TopC	-1.69	-1.35	-1.84	+2.12	-0.88			
Та	TopC-adj	-1.68	-1.35	-1.78	+1.93	-0.89			
	MMC	-1.68	-1.34	-1.86	+2.11	-0.88			
V	TopC	-1.60	-1.20	-1.75	+1.64	-0.95			
	TopC-adj	-1.61	-1.37	-1.73	+1.57	-0.80			
	MMC	-1.57	-1.30	-1.79	+1.65	-0.83			
W	TopC	-1.60	-1.34	-1.68	+1.76	-0.82			
	TopC-adj	-1.60	-1.31	-1.62	+1.60	-0.85			
	MMC	-1.57	-1.31	-1.74	+1.76	-0.84			
Zr	TopC	-1.69	-1.27	-1.83	+1.98	-0.98			
	TopC-adj	-1.67	-1.27	-1.84	+1.86	-0.98			
	MMC	-1.68	-1.34	-1.84	+1.97	-0.88			

Table S3 Bader charges for all the studied surfaces with adsorbed CO_2 Here q^{C-C} is the Bader charge of the surface C atom involved in the CO_2 adsorption.

Fig. S1 Top view of the $(3\sqrt{2}\times3\sqrt{2})R45^{\circ}$ model, the CO₂ was adsorbed both in the shown position but the dopant was moved from Near to Far position. The carbon from the CO₂ is represented in light brown to contrast the carbons from the slab (dark brown).

Fig. S2 Top view of the slab model used to represent a higher coverage situation. Note that due to periodic symmetry, the CO_2 adsorbed at the four corners correspond to the same molecule.

