Electronic supporting information

for

Novel push-pull quinoxalinone-based chromophores with high sensitivity of emission and absorption to small structural modifications

T.I. Burganov*a, S.A. Katsyuba^a, S.M. Sharipova^a, A.A. Kalinin^a, M. Antonio^b, X. Assfeld^b.

a – Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Kazan, Russia b – University of Lorraine, LPCT UMR 7019, F-54000 Nancy, France * - corresponding author: <u>timk90@mail.ru</u>

Energy ^a														
State		LR-PCM/SS-PCM ^b												
	Gas		Dioxane ^c		DCM ^d		CH ₃ CN ^e							
	Hartree	ΔE, eV	Hartree	ΔE, eV	Hartree	ΔE, eV	Hartree	Δ Ε , eV						
	On the optimized ground state (S ₀) geometry													
S ₀	-1092.923826	0.00	-1092.929455	0.00	-1092.935578	0.00	-1092.937674	0.00						
S_1	-1092.781448	3.87	-1092.792476	3.73	-1092.799495	3.70	-1092.801309	3.71						
S ₂	-1092.779456	3.93	-1092.788426	3.84	-1092.795151	3.82	-1092.797186	3.82						
S ₃	-1092.775781	4.03	-1092.780268	4.06	-1092.784872	4.10	-1092.78641	4.12						
	On the optimized geometry of the first excited singlet state (S ₁)													
S_0	-1092.911731	0.00	-1092.916281	0.00	-1092.921023	0.00	-1092.922526	0.00						
S_1	-1092.793661	4.03	-1092.80619	3.00	-1092.818377	2.79	-1092.822184	2.73						
			-1092.801829	3.11	-1092.810582	3.01	-1092.813535	2.97						
S_2	-1092.779004	3.61	-1092.78691	3.52	-1092.794963	3.43	-1092.797487	3.40						
S ₃	-1092.763617	4.03	-1092.766998	4.06	-1092.77056	4.09	-1092.771659	4.11						
	On the optimized geometry of the second excited singlet state (S_2)													
S_0	-1092.911481	0.00	-1092.916675	0.00	-1092.924927	0.00	-1092.92688	0.00						
S_1	-1092.779236	3.60	-1092.791243	3.41	-1092.808782	3.16	-1092.812507	3.11						
S_2	-1092.793051	3.22	-1092.80159	3.13	-1092.808267	3.17	-1092.811092	3.15						
			-1092.811378	2.87	-1092.843546	2.21	-1092.856739	1.91						
S_3	-1092.772055	3.79	-1092.776145	3.82	-1092.781101	3.91	-1092.782716	3.92						

Table S1. Electronic energies (in Hartrees/eV) of ground state (S₀) and the first three electronically excited singlet states (S₁, S₂ and S₃) of molecule **1** calculated with the use of long-range corrected ω B97XD functional ¹⁰⁰ and def2-TZVP basis set ^{95, 96}.

a – Energies of S_n states (n = 1, 2, 3) are obtained from the TD-DFT calculations of the S₀ \rightarrow S_n transitions; b – for the solvents considered both linear-response (LR) and state-specific (SS) ¹⁰⁹ PCM calculations were used; the results of SS-PCM calculations including solvent relaxation upon excitation are given in bold; c – PCM calculations using 1,4-dioxane as a solvent model; d – PCM calculations using dichloromethane as a solvent model; e – PCM calculations using acetonitrile as a solvent model. Values in *eV* represent the difference between S_n and S₀ energies (where *n* = 1,2,3).

Compound	1	2	3	4	5	6						
Solvatochromic shift ^[a]												
	1,4-dioxane (ϵ = 2.25)											
$\Delta\lambda_{abs}, nm$	0	0	0	0	0	0						
eV	0.00	0.00	0.00	0.00	0.00	0.00						
	Ethyl Acetate ($\varepsilon = 6.02$)											
$\Delta\lambda_{abs}, nm$	0	3	3	4	-4	2						
eV	0.00	0.02	0.02	0.02	-0.03	0.01						
	CH ₂ Cl ₂ ($\epsilon = 8.93$)											
$\Delta\lambda_{abs}, nm$	8	4	6	7	11	7						
eV	0.08	0.03	0.05	0.04	0.07	0.04						
	Acetone ($\varepsilon = 20.7$)											
$\Delta\lambda_{abs}, nm$	5	-1	0	-2	7	4						
eV	0.05	-0.01	0.00	-0.01	0.04	0.02						
	$CH_3CN \ (\epsilon = 37.5)$											
$\Delta\lambda_{abs}, nm$	5	-3	0	-4	9	5						
eV	0.05	0.00	0.02	0.00	0.03	0.04						
	$DMSO (\varepsilon = 46.7)$											
$\Delta \lambda_{abs}, nm$	13	12	10	9	11	8						
eV	0.12	0.07	0.08	0.05	0.07	0.05						

Table S2. Experimental solvatochromic shifts for every solvent used relative to those in 1,4-dioxane.

Figure S1. Linear correlation between $E_T(30)$ values [taken from Ch. Reichardt, E. Harbusch-Gornert, *Liebigs Ann. Chem.*, **1983**, 721 – 743] and the experimental positions of λ_{emi} for compounds **1-4** in every solvent used.