Heterometallic perovskite-type metal-organic framework with an ammonium cation: structure, phonons, and optical response of [NH₄]Na_{0.5}Cr_xAl_{0.5-x}(HCOO)₃ (x=0, 0.025 and 1)

by Maciej Ptak et al.

Electronic Supplementary information

Fig. S1. The DSC trace for AmNaCr.

Fig. S2. The experimental XRD patterns of AmNaCr (red line) and AmNaAlCr (blue line) together with simulated one (black line) for AmNaCr basing on the crystal structure refinement.

Fig. S3. X-ray diffraction experimental details for AmNaCr.

Fig. S4. The temperature evolution of wavenumber (red circles, left scales) and FWHM (blue squares, right scales) of selected Raman bands corresponding to HCOO⁻ ions: (a) v_1 (symmetric CH stretching), (b) v_5 (CH in plane bending), (c, f) v_2 (symmetric stretching CO), (d) v_6 (CH out of plane bending), (e) v_3 (symmetric OCO bending), (g, h) translational and (i–k) librational modes.

Tab. S1. X-ray diffraction experimental details for AmNaCr.

	Crystal data					
Chemical formula	$C_{3}H_{7}Cr_{0.50}NNa_{0.50}O_{6}$					
$M_{ m r}$	190.59					
Crystal system, space group	Trigonal, R^{-3} :H					
Temperature (K)	298					
<i>a</i> , <i>c</i> (Å)	7.9386(5), 21.494(3)					
V(Å ³)	1173.1(2)					
Ζ	6					
Radiation type	ΜοΚα					
μ (mm ⁻¹)	0.82					
Crystal size (mm)	0.18×0.15×0.09					
1	Data collection					
Diffractometer	Xcalibur, Atlas					
Absorption correction	Multi-scan CrysAlis PRO					
T_{\min}, T_{\max}	0.855, 1.000					
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	3383, 586, 444					
R _{int}	0.049					
$(\sin \theta / \lambda)_{max} (\text{\AA}^{-1})$	0.655					
	Refinement					
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.040, 0.092, 1.02					
No. of reflections	586					
No. of parameters	39					
No. of restraints	3					
H-atom treatment	H atoms treated by a mixture of independent and constrained refinement					
$\Delta \rangle_{max}, \Delta \rangle_{min}$ (e Å ⁻³)	0.28, -0.30					
Computer programs: SHELXL2014/7.						

Tab. S2. Selected geometric parameters for AmNaCr (Å, °).

CrO1 × 6	1.9683(17)	
Na–O2 \times 6	2.4082(19)	
O1–C1	1.255(3)	
C1–O2	1.216(3)	
C1–H1	0.9300	
N2-H11	0.873(5)	
N2-H21	0.871(5)	

O–Cr–O _{cis}	88.74(7)-91.26(7)
O-Cr-O _{trans}	180.0
O–Na–O _{cis}	86.70(7)-93.30 (7)
O-Na-O _{trans}	180.00(6)
O2C1O1	126.8(3)

Tab. S3. Selected Selected hydrogen-bond parameters for AmNaCr.

D–H···A	<i>D</i> —H (Å)	$\mathrm{H}^{\dots}A\left(\mathrm{\AA}\right)$	$D^{\dots}A$ (Å)	D–H··· A (°)
N2-H11O2	0.873(5)	1.983(6)	2.852(2)	173.3(17)
$N2-H21\cdots O1^i$	0.871(5)	2.592(5)	3.324(4)	142.19(9)
N2–H21…O1 ⁱⁱ	0.871(5)	2.592(5)	3.324(4)	142.19(9)
$N2-H21\cdots O1^{iii}$	0.871(5)	2.592(5)	3.324(4)	142.19(9)

Symmetry code(s): (i) -x+1/3, -y+2/3, -z+5/3; (ii) y+1/3, -x+y+2/3, -z+5/3; (iii) x-y+1/3, x+2/3, -z+5/3.

Ion	Vibration	Free ion symmetry	Site symmetry	Factor group symmetry
		$C_{2\nu}$	C_1	S_6
	ν_1	$A_1^{(R,IR)}$	A ^(R,IR)	$A_g^{(R)} + A_u^{(IR)} + E_g^{(R)} + E_u^{(IR)}$
	ν_2	$A_1^{(R,IR)}$	$A^{(R,IR)}$	$A_g^{(R)} + A_u^{(IR)} + E_g^{(R)} + E_u^{(IR)}$
	v_3	$A_1^{(R,IR)}$	$A^{(R,IR)}$	$\boldsymbol{A}_{\boldsymbol{g}}^{(R)} + \boldsymbol{A}_{\boldsymbol{u}}^{(IR)} + \boldsymbol{E}_{\boldsymbol{g}}^{(R)} + \boldsymbol{E}_{\boldsymbol{u}}^{(IR)}$
HCOO-	ν_4	$B_1^{(R,IR)}$	A ^(R,IR)	$\boldsymbol{A}_{\boldsymbol{g}}^{(R)} + \boldsymbol{A}_{\boldsymbol{u}}^{(IR)} + \boldsymbol{E}_{\boldsymbol{g}}^{(R)} + \boldsymbol{E}_{\boldsymbol{u}}^{(IR)}$
	ν_5	$B_1^{(R,IR)}$	$A^{(R,IR)}$	$A_g^{(R)} + A_u^{(IR)} + E_g^{(R)} + E_u^{(IR)}$
	ν_6	$B_1^{(R,IR)}$	$A^{(R,IR)}$	$A_g^{(R)} + A_u^{(IR)} + E_g^{(R)} + E_u^{(IR)}$
	T'	$\begin{array}{c} A_{1}{}^{(R,IR)} + B_{1}{}^{(R,IR)} + \\ B_{2}{}^{(R,IR)} \end{array}$	$3A^{(R,IR)}$	$3A_g{}^{(R)} + 3A_u{}^{(IR)} + 3E_g{}^{(R)} + 3E_u{}^{(IR)}$
	L	$A_2{}^{(R)} + B_1{}^{(R,IR)} + B_2{}^{(R,IR)}$	$3A^{(R,IR)}$	$3A_g{}^{(R)} + 3A_u{}^{(IR)} + 3E_g{}^{(R)} + 3E_u{}^{(IR)}$
		T_d	C_3	S_6
	ν_1	$A_1^{(R)}$	A ^(R,IR)	$A_g^{(R)} + A_u^{(IR)}$
	v_2	E ^(R)	E ^(R,IR)	$E_g^{(R)} + E_u^{(IR)}$
$\mathrm{NH_4^+}$	v_3	$F_2^{(R,IR)}$	$A^{(R,IR)} + E^{(R,IR)}$	$\boldsymbol{A}_{\boldsymbol{g}}^{(R)} + \boldsymbol{A}_{\boldsymbol{u}}^{(IR)} + \boldsymbol{E}_{\boldsymbol{g}}^{(R)} + \boldsymbol{E}_{\boldsymbol{u}}^{(IR)}$
	ν_4	$F_2^{(R,IR)}$	$A^{(R,IR)} + E^{(R,IR)}$	$\boldsymbol{A}_{\boldsymbol{g}}^{(R)} + \boldsymbol{A}_{\boldsymbol{u}}^{(IR)} + \boldsymbol{E}_{\boldsymbol{g}}^{(R)} + \boldsymbol{E}_{\boldsymbol{u}}^{(IR)}$
	T'	$F_2^{(R,IR)}$	$A^{(R,IR)} + E^{(R,IR)}$	$\boldsymbol{A}_{\boldsymbol{g}}^{(R)} + \boldsymbol{A}_{\boldsymbol{u}}^{(IR)} + \boldsymbol{E}_{\boldsymbol{g}}^{(R)} + \boldsymbol{E}_{\boldsymbol{u}}^{(IR)}$
	L	F ₁ (⁻)	$A^{(R,IR)} + E^{(R,IR)}$	$A_g^{(R)} + A_u^{(IR)} + E_g^{(R)} + E_u^{(IR)}$
Cr^{3+}			S_6	C_{2v}
Cr	Τ'	_	$A_{u}^{(IR)} + E_{u}^{(IR)}$	$A_{u}^{(IR)} + E_{u}^{(IR)}$
Na ⁺			<i>S</i> ₆	$C_{2\nu}$
ina	Τ'		$A_{u}^{(IR)} + E_{u}^{(IR)}$	$A_u^{(IR)} + E_u^{(IR)}$

Tab. S4. Factor group analysis for AmNaCr.^a

^aKey: (R), Raman active; (IR), infrared active; (–), inactive mode; T, translations; L, librations, v_1-v_6 (HCOO⁻), characteristic vibrations of formate ions (see in paper); v_1-v_4 (NH₄⁺), characteristic vibrations of ammonium ions (see in paper).

Tab. S5. Room temperature IR and Raman (at 80 and 300 K) wavenumbers (cm⁻¹) measured

for	AmNaCr	and AmN	VaAlCr con	npounds	and pro	posed ass	signments a
101	7 min vacı	and min	and the con	npounds	and pro	posed ass	nginnentis.

	AmNaCr		AmN	aAlCr	
Raman (80 K)	Raman (RT)	IR (RT)	Raman (RT)	IR (RT)	Assignment
		3561 w			v ₃ (NH ₄ ⁺)
		3433 w		3438 w	$v_3(NH_4^+)$
3299 vw	3277 vw	3285 w	3277 vw	3285 w	$v_3(NH_4^+)$
3193 vw				3188 w	$v_3(NH_4^+)$
3160 vw	3177 vw	3179 w		3163 w	$v_3(NH_4^+)$
3090 vw		3099 w		3119 w	$v_3(NH_4^+)$
3063 vw	3058 vw				$v_3(NH_4^+)$
3008 vw	3003 w		3019 w	3001 w	$v_1(NH_4^+)$
2986 vw	2987 sh	2982 m	2990sh		$v_1(NH_4^+)$
2964 vw	2968 sh				$v_1(NH_4^+)$
		2920 vw		2925 vw	$\nu_1(\mathrm{NH_4^+})$
2910 sh		2911 w	2897 vs		$v_1(NH_4^+)$
2902 m	2893 m	2893 w		2897 w	v ₁ (HCOO ⁻)
		2858 m	2847 w	2861 w	v ₁ (HCOO ⁻)
2846 m	2840 w	2847 m	2786 w		$v_1(NH_4^+)$
2787 w	2778 w	2770 vw		2787 vw	overtone
		2738 vw			overtone
		2622 vw		2663 sh	overtone
		2611 vw		2651 w	overtone
1706 vw	1701 vw	1709 w	1701 vw	1712 w	$\nu_2(\mathrm{NH_4^+})$
1650 m	1652 s	1643 sh	1668 w	1639 s	v ₄ (HCOO ⁻)
		1625 vs		1624 s	v ₄ (HCOO ⁻)
1589 vw	1587 vw	1603 vs	1594 w	1604 vs	$v_4(HCOO^-)$
1485 vw		1473 w	1478 vw	1476 vw	$\nu_4(\mathrm{NH_4^+})$
1460 w	1455 w	1443 w	1457 w	1445 w	$\nu_4(\mathrm{NH_4^+})$
	1398 s	1399 m			ν ₅ (HCOO ⁻)
1403 s		1386 sh	1402 vs	1403 m	ν ₅ (HCOO ⁻)
1349 sh	1344 vs				ν ₅ (HCOO ⁻)
1342 vs			1359 vs		ν ₅ (HCOO ⁻)
		1326 sh		1346 w	ν ₂ (HCOO ⁻)
1312 m	1312 s	1311 vs	1323 s	1333 vs	ν ₂ (HCOO ⁻)
		1285 m		1311 m	v ₂ (HCOO ⁻)
1063 w	1063 w	1063 vw	1068 w	1068 vw	v ₆ (HCOO ⁻)
813 w	810 w	815 m	805 w	823 m	v ₃ (HCOO ⁻)

806 w	807 w	801 sh			v ₃ (HCOO ⁻)
		768 vw		763 vw	v ₃ (HCOO ⁻)
498 vw		475 vw		483 sh	$L(NH_4^+)$
		424 m		465 m	T'(M ³⁺)
396 vw				424 m	T'(M ³⁺)
350 w	345 m		342 w		$L(NH_4^+)$
319 vw					$L(NH_4^+)$
		284 w		323 w	T'(M ^{III})
			312 w		$T'(NH_4^+)$
		258 vw			T'(Na ⁺)
250 vw			295 w		$T'(NH_4^+)$
243 w	235 w		236 w		$T'(NH_4^+)$
		226 w		232 w	$T'(Na^{+})+T'(NH_{4}^{+})$
226 w	218 m		221 m		T'(HCOO-)
		206 w		206 w	$T'(HCOO^{-})+T'(NH_4^{+})$
204 w	196 m		194 m		T'(HCOO ⁻)
		190 sh		190 w	$T'(HCOO^{-})+T'(NH_4^{+})$
159 w	149 sh		151 m		T'(HCOO-)
		144 w		144 w	$T'(HCOO^{-})+T'(NH_4^{+})$
134 w	132 m		136 m		T'(HCOO-)
113 m	107 vs		109 vs		L(HCOO-)
		103 vw		103 vw	L(HCOO ⁻)
103 m	96 vs		96 vs		L(HCOO-)
76 vw		81 w		84 w	L(HCOO ⁻)
62 w	59 m		60 w		L(HCOO ⁻)

^aKey: s, strong; m, medium; w, weak; vw, very weak; sh, shoulder; v_1-v_6 (HCOO⁻), characteristic vibrations of formate ions (see in paper); v_1-v_4 (NH₄⁺), characteristic vibrations of ammonium ions (see in paper); T', translations; L, librations.

Tab. S6. Room temperature IR and Raman (at 80 and 300 K) wavenumbers (cm⁻¹) measured

for AmNaCr along with detailed assignments using DFT harmonic approximation.^a

	Calculated		-	Experimental		
Sym.	Raman	IR	Raman (80 K)	Raman (RT)	IR (RT)	Assignment
					3561 w	
					3433 w	
A_u		3375			3285 w	v(NH)
A_{g}	3374		3299 vw	3277 vw		v(NH)
			3193 vw			
			3160 vw	3177 vw	3179 w	
			3090 vw		3099 w	

			3063 vw	3058 vw		
			3008 vw	3003 w		
					2982 m	
					2920 vw	
			2986 vw	2987 sh		
			2964 vw	2968 sh		
			2910 sh			
					2911 w	
A_{u}		2938			2893 w	
E_{u}		2937			2858 m	ν ₁ (HCOO ⁻)
E_{g}	2938		2902 vs	2893 vs		ν ₁ (HCOO ⁻)
A_{g}	2937					v ₁ (HCOO ⁻)
					2847 m	v ₁ (HCOO ⁻)
A_{g}	2871		2846 m	2840 w		
Eg	2825		2787 w	2778 w		$v_3(NH_4^+)$
A_u		2876			2770 vw	$v_3(NH_4^+)$
E_{u}		2828			2738 vw	$v_1(NH_4^+)$
					2622 vw	$v_1(NH_4^+)$
					2611 vw	
E_{u}		1696			1709 w	
Eg	1686		1706 vw	1701 vw		$v_2(NH_4^+)$
A_{g}	1648		1650 m	1652 s		$v_2(NH_4^+)$
					1643 sh	$v_2(NH_4^+)+v_4(HCOO^-)$
E_{u}		1596			1625 vs	
A_u		1595			1603 vs	$v_2(NH_4^+)+v_4(HCOO^-)$
E_g	1589		1589 vw	1587 vw		$v_2(NH_4^+)+v_4(HCOO^-)$
A_g	1493		1485 vw			$v_2(NH_4^+)+v_4(HCOO^-)$
A_u		1492			1473 w	$v_4(NH_4^+)$
Eg	1441		1460 w	1455 w		$v_4(NH_4^+)$
E_{u}		1429			1443 w	$v_4(NH_4^+)$
Eg	1362		1403 s	1398 s		$v_4(NH_4^+)$
E_u		1358			1399 m	v ₅ (HCOO ⁻)
					1386 sh	v ₅ (HCOO ⁻)
A_u		1355			1326 sh	
A_{g}	1355		1349 sh	1344 vs		v ₅ (HCOO ⁻)
A_{g}	1326		1342 vs			v ₅ (HCOO ⁻)
A_u		1318			1311 vs	v ₂ (HCOO ⁻)
Eg	1307		1312 m	1312 s		v ₂ (HCOO ⁻)
E_{u}		1303			1285 m	v ₂ (HCOO ⁻)
A_{u}		1011			1063 vw	v ₂ (HCOO ⁻)
E_g	1010		1063 w	1063 w		ν ₆ (HCOO ⁻)
E_{u}		1008				v ₆ (HCOO ⁻)
A_{g}	1007					v ₆ (HCOO ⁻)
A_{u}		790			815 m	v ₆ (HCOO ⁻)
A_{g}	784		813 w	810 w		$v_3(HCOO^-)+L(NH_4^+)+T'(M^{III})$
E_{u}		783			801 sh	$v_3(HCOO^-)+L(NH_4^+)$

Eg	774		806 w	807 w		$v_3(HCOO^-)+T'(M^{III})$
A_{u}		628			768 vw	$v_3(\text{HCOO}^-)+L(\text{NH}_4^+)$
A_{g}	626		498 vw			$L(NH_4^+)$
E_{u}		488			475 vw	$L(NH_4^+)$
E_{g}	481		396 vw			$L(NH_4^+)$
A_{u}		422			424 m	$L(NH_4^+)$
E_{u}		420				$L(NH_4^+)+L(HCOO^-)+T'(Cr^{3+})$
A_{g}	336		350 w	345 m		$L(NH_4^+)+L(HCOO^-)+T'(Cr^{3+})$
E_{g}	319		319 vw			$L(NH_4^+)+L(HCOO^-)$
$\mathbf{E}_{\mathbf{u}}$		286			284 w	$L(NH_4^+)+L(HCOO^-)$
A_{u}		281				$T'(NH_4^+)+L(HCOO^-)+T'(Cr^{3+})+T'(Na^+)$
E_{g}	268					$T'(NH_4^+)+L(HCOO^-)+T'(Cr^{3+})$
A_{u}		261			258 vw	T'(NH ₄ ⁺)+L(HCOO ⁻)
A_{g}	256		250 vw			$T'(NH_4^+)+T'(HCOO^-)+T'(Na^+)$
E_{u}		254				$T'(NH_4^+)+L(HCOO^-)$
A_{u}		234			226 w	$T'(NH_4^+)+T'(HCOO^-)+T'(Na^+)$
A_{g}	228		243 w	235 w		$T'(NH_4^+)+T'(HCOO^-)+T'(Na^+)$
E_{g}	225		226 w	218 m		$T'(NH_4^+)+T'(HCOO^-)$
E_{u}		217				$T'(NH_4^+)+T'(HCOO^-)$
A_{g}	204		204 w			$T'(NH_4^+)+L(HCOO^-)+T'(Na^+)$
E_{u}		197			206 w	$T'(NH_4^+)+T'(HCOO^-)$
A_{u}		195			190 sh	$T'(NH_4^+)+L(HCOO^-)+T'(Na^+)$
A_{g}	168			196 m		$T'(NH_4^+)+T'(HCOO^-)+T'(Na^+)$
A_{u}		160				$T'(NH_4^+)+T'(HCOO^-)$
E_{g}	159		159 w	149 sh		$T'(NH_4^+)+T'(HCOO^-)+T'(Na^+)$
E_{u}		149			144 w	$L(NH_4^+)+T'(HCOO^-)$
E_{g}	126		134 w	132 m		$L(NH_4^+)+T'(HCOO^-)+T'(Cr^{3+})+T'(Na^+)$
A_{u}		120				$T'(NH_4^+)+T'(HCOO^-)$
A_{g}	115		113 m	107 vs		$T'(NH_4^+)+L(HCOO^-)$
E_{u}		107			103 vw	$T'(NH_4^+)+L(HCOO^-)$
E_{g}	104		103 m	96 vs		$L(HCOO^{-})+T'(Cr^{3+})+T'(Na^{+})$
A_{g}	92		76 vw			$T'(NH_4^+)+L(HCOO^-)$
A_{u}		82			81 w	$L(NH_4^+)+L(HCOO^-)$
E_{u}		79				$L(NH_4^+)+L(HCOO^-)+T'(Cr^{3+})+T'(Na^+)$
E_{g}	40		62 w	59 m		$L(NH_4^+)+L(HCOO^-)+T'(Cr^{3+})+T'(Na^+)$
						$T'(NH_4^+)+L(HCOO^-)$

^aKey: s, strong; m, medium; w, weak; vw, very weak; sh, shoulder; $v_1-v_6(\text{HCOO}^-)$, characteristic vibrations of formate ions (see in paper); $v_1-v_4(\text{NH}_4^+)$, characteristic vibrations of ammonium ions (see in paper); T', translations; L, librations.