Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics.

Supporting Information

Performance of TDDFT with and without spin-flip in trajectory surface hopping dynamics: Cis-trans azobenzene photoisomerization

Ling Yue,^{ab} Yajun Liu^c and Chaoyuan Zhu^{ad}

^aDepartment of Applied Chemistry and Institute of Molecular Science, National Chiao Tung University, Hsinchu 30010, Taiwan

^bMOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, State Key Laboratory for Mechanical Behavior of Materials, and Institute of Chemistry for New Energy Materials, Department of Chemistry, Faculty of Science, Xi'an Jiaotong University, Xi'an 710049, P. R. China

^cKey Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China

^dCenter for Emergent Functional Matter Science, National Chiao Tung University,

Hsinchu 30010, Taiwan

^{*a*}Electronic mail:cyzhu@mail.nctu.edu.tw.

Scheme Photoisomerization mechanism of azobenzene following excitation to the $S_1(n\pi^*)$ state with potential energy profiles along minimum energy path of rotational transition state on S_0 state. Cis-Min S_0 electronic structure is in the left bottom, trans-Min S_0 in the right bottom, TS-rot S_0 in the left middle, CI-inv S_0/S_1 in the right middle, and CI-rot S_0/S_1 in the top.

Fig. S1 The stereoview of the superposition for TS-inv-rot optimized by SF-TDDFT and TDDFT.

Fig. S2 The two-dimensional potential energy surfaces in vicinity of conical intersections. Left panel is CI-rot S_0/S_1 in terms of NNCC1 and CNNC dihedral angles and right panel is CI-inv S_0/S_1 in terms of CNN and NNC bond angles. (a) and (b) calculated by SF-TDDFT. (c) and (d) calculated by SA2-CAS(6,6).

Fig. S3 The two-dimensional potential energy surfaces in terms of NNCC1 and CNNC dihedral angles in vicinity of cis-min S_1 (actually stands for double cone conical intersection) calculated by TDDFT.

Fig. S4 The time evolution of the average population of the S_0 and S_1 states for the cis-to-trans photoisomerization simulated by Tully's fewest switches algorithm at SF-TDDFT level.

SF-TDDFT 150 150 120 120 -90 90 60 60 NNCC2 (deg) NNCC1 (deg) 30 -30 -0 -0 -30 --30 --60 --60 -90 -90 -120 -120 -150 -150 30 -30 0 60 150 120 150 -90 -60 90 120 -150 -120 -90 -60 -30 0 30 60 90 -150 -120 CNNC (deg) CNNC (deg) 150 -150 120 120 -90 -90 -60 60 NNCC1 (deg) NNCC2 (deg) 30 -30 -0 -0 -

Fig. S5 The left (right) panel stands simulated cis-to-trans photoisomerization results from SF-TDDFT method in THS-LS algorithm in terms of CNNC/NNCC1 (left panel) and CNNC/NNCC2 (right panel). Top panel is for hopping spots and bottom panel is for product distributions.

Fig. S6 The S_1 PESs along the rotation of the CNNC dihedral angle by SF-TDDFT and TDDFT methods.

trans-azobenzene S ₀ Min									
SF-TDDFT					TDDFT				
N	-0.003	0.488	0.391	Ν	0.000	0.488	0.393		
С	-0.002	0.184	1.780	С	0.000	0.186	1.776		
С	-0.001	1.280	2.632	С	0.000	1.282	2.632		
С	0.001	1.089	4.006	С	0.000	1.090	4.006		
С	0.002	-0.200	4.524	С	0.000	-0.199	4.523		
С	0.001	-1.296	3.666	С	0.000	-1.296	3.664		
С	-0.001	-1.111	2.294	С	0.000	-1.110	2.293		
Н	-0.002	2.264	2.200	Н	0.001	2.267	2.199		
Н	0.002	1.938	4.668	Η	0.000	1.938	4.668		
Н	0.004	-0.352	5.590	Η	0.000	-0.351	5.589		
Н	0.001	-2.294	4.071	Η	-0.001	-2.294	4.068		
Н	-0.002	-1.943	1.615	Η	0.000	-1.942	1.613		
Ν	-0.003	-0.487	-0.391	Ν	0.000	-0.488	-0.393		
С	-0.002	-0.183	-1.779	С	0.000	-0.186	-1.776		
С	-0.001	-1.280	-2.632	С	0.000	-1.282	-2.632		
С	0.001	-1.089	-4.006	С	0.000	-1.090	-4.006		
С	0.002	0.199	-4.524	С	0.000	0.199	-4.523		
С	0.001	1.296	-3.667	С	0.000	1.296	-3.664		
С	-0.001	1.111	-2.295	С	0.000	1.110	-2.293		
Н	-0.002	-2.264	-2.198	Η	0.001	-2.267	-2.199		
Η	0.002	-1.938	-4.667	Η	0.000	-1.938	-4.668		
Н	0.004	0.351	-5.590	Η	0.000	0.351	-5.589		
Н	0.002	2.293	-4.072	Н	-0.001	2.294	-4.068		
Н	-0.002	1.943	-1.616	Н	0.000	1.942	-1.613		

 Table S1.Cartesian coordinates for all optimized geometries.

			trans-azobe	enzene S	S_1 Min				
		SF-TDDFT			TDDFT				
Ν	0.002	0.395	0.481	N	0.918	0.404	0.481		
С	0.001	0.160	1.843	С	0.441	0.207	1.766		
С	0.002	1.284	2.700	С	0.597	1.243	2.692		
С	0.000	1.099	4.066	С	0.138	1.081	3.986		
С	-0.001	-0.201	4.608	С	-0.469	-0.109	4.376		
С	-0.002	-1.285	3.766	С	-0.616	-1.141	3.455		
С	-0.001	-1.116	2.375	С	-0.167	-0.993	2.154		
Н	0.003	2.265	2.268	Н	1.072	2.154	2.376		
Н	0.001	1.951	4.718	Н	0.256	1.882	4.695		
Н	-0.002	-0.337	5.672	Н	-0.821	-0.232	5.386		
Н	-0.004	-2.280	4.167	Н	-1.083	-2.064	3.752		
Н	-0.002	-1.965	1.722	Н	-0.269	-1.785	1.433		
Ν	0.002	-0.395	-0.481	Ν	0.918	-0.404	-0.481		
С	0.001	-0.160	-1.843	С	0.441	-0.207	-1.766		
С	0.002	-1.284	-2.700	С	0.597	-1.243	-2.692		
С	0.000	-1.099	-4.066	С	0.138	-1.081	-3.986		
С	-0.001	0.201	-4.608	С	-0.469	0.109	-4.376		
С	-0.002	1.285	-3.766	С	-0.616	1.141	-3.455		
С	-0.001	1.116	-2.375	С	-0.167	0.993	-2.154		
Н	0.003	-2.265	-2.268	Н	1.073	-2.154	-2.376		
Н	0.001	-1.951	-4.718	Н	0.256	-1.882	-4.695		
Н	-0.002	0.337	-5.672	Н	-0.821	0.232	-5.386		
Н	-0.004	2.280	-4.167	Н	-1.083	2.064	-3.752		
Η	-0.002	1.965	-1.722	Н	-0.269	1.785	-1.433		

			cis-azober	nzene S	₀ Min				
SF-TDDFT					TDDFT				
Ν	1.902	0.002	0.623	N	1.883	0.007	0.625		
С	0.722	-0.055	1.446	С	0.711	-0.049	1.450		
С	0.690	0.801	2.540	С	0.704	0.792	2.559		
С	-0.368	0.738	3.435	С	-0.344	0.733	3.465		
С	-1.371	-0.209	3.262	С	-1.361	-0.200	3.294		
С	-1.312	-1.091	2.190	С	-1.326	-1.070	2.210		
С	-0.272	-1.015	1.276	С	-0.297	-0.996	1.283		
Н	1.496	1.499	2.678	Н	1.523	1.476	2.695		
Н	-0.401	1.412	4.273	Н	-0.357	1.397	4.312		
Н	-2.183	-0.270	3.965	Н	-2.165	-0.259	4.006		
Η	-2.075	-1.839	2.064	Н	-2.100	-1.808	2.087		
Н	-0.227	-1.698	0.447	Н	-0.272	-1.672	0.447		
Ν	1.904	-0.024	-0.621	Ν	1.884	-0.035	-0.621		
С	0.725	0.046	-1.445	С	0.714	0.037	-1.449		
С	0.680	-0.817	-2.533	С	0.695	-0.807	-2.556		
С	-0.377	-0.742	-3.429	С	-0.351	-0.733	-3.463		
С	-1.364	0.222	-3.264	С	-1.353	0.216	-3.295		
С	-1.291	1.111	-2.197	С	-1.306	1.088	-2.214		
С	-0.252	1.023	-1.282	С	-0.279	1.000	-1.285		
Н	1.474	-1.530	-2.666	Н	1.503	-1.504	-2.690		
Н	-0.421	-1.422	-4.262	Н	-0.373	-1.398	-4.309		
Н	-2.175	0.291	-3.967	Н	-2.155	0.286	-4.009		
Н	-2.042	1.872	-2.077	Н	-2.068	1.838	-2.093		
Н	-0.197	1.711	-0.458	Н	-0.244	1.677	-0.451		

cis-azobenzene S_1 Min						
		TDDFT				
Ν	1.359	-0.261	0.555			
С	0.573	0.012	1.637			
С	0.754	-0.782	2.784			
С	-0.019	-0.564	3.906			
С	-0.974	0.452	3.916			
С	-1.147	1.253	2.790			
С	-0.386	1.046	1.656			
Н	1.501	-1.554	2.754			
Н	0.120	-1.179	4.778			
Н	-1.571	0.622	4.795			
Н	-1.877	2.044	2.802			
Н	-0.504	1.670	0.789			
Ν	1.339	0.382	-0.559			
С	0.572	0.044	-1.643			
С	0.702	0.836	-2.796			
С	-0.060	0.560	-3.914			
С	-0.951	-0.512	-3.912			
С	-1.071	-1.311	-2.778			
С	-0.320	-1.045	-1.647			
Н	1.401	1.652	-2.776			
Н	0.040	1.174	-4.792			
Н	-1.538	-0.727	-4.787			
Н	-1.749	-2.146	-2.780			
Н	-0.397	-1.668	-0.775			

CI-rot S ₀ /S ₁			CI-inv S ₀ /S ₁						
SF-TDDFT					SF-TDDFT				
Ν	-0.038	-1.413	0.596	N	0.000	-0.292	0.543		
С	-0.058	-0.546	1.703	С	0.000	-0.132	1.903		
С	-0.655	0.718	1.684	С	0.000	1.146	2.470		
С	-0.602	1.512	2.816	С	0.000	1.275	3.849		
С	0.034	1.053	3.967	С	0.000	0.161	4.676		
С	0.618	-0.210	3.986	С	0.000	-1.102	4.098		
С	0.568	-1.013	2.860	С	0.000	-1.261	2.725		
Н	-1.157	1.053	0.795	Н	0.000	2.011	1.838		
Н	-1.060	2.486	2.807	Н	0.000	2.260	4.275		
Н	0.069	1.675	4.844	Н	0.000	0.273	5.742		
Н	1.104	-0.565	4.878	Н	0.000	-1.976	4.721		
Н	1.005	-1.995	2.844	Н	0.000	-2.238	2.285		
Ν	-0.592	-1.087	-0.489	Ν	0.000	0.183	-0.569		
С	-0.236	-0.472	-1.652	С	0.000	0.100	-1.863		
С	-1.179	-0.354	-2.683	С	0.000	1.294	-2.678		
С	-0.833	0.273	-3.864	С	0.000	1.176	-4.060		
С	0.449	0.783	-4.051	С	0.000	-0.080	-4.685		
С	1.386	0.657	-3.034	С	0.000	-1.267	-3.870		
С	1.060	0.040	-1.839	С	0.000	-1.200	-2.530		
Н	-2.164	-0.758	-2.533	Н	0.000	2.253	-2.199		
Н	-1.565	0.361	-4.648	Н	0.000	2.067	-4.659		
Н	0.712	1.265	-4.975	Н	0.000	-0.163	-5.753		
Н	2.383	1.041	-3.170	Н	0.000	-2.226	-4.352		
Н	1.786	-0.063	-1.053	Н	0.000	-2.084	-1.923		

			TS-in	v-rot S)				
SF-TDDFT					TDDFT				
N	0.306	1.374	0.681	N	1.115	0.893	0.675		
С	0.104	0.484	1.814	С	0.433	0.303	1.810		
С	0.217	1.079	3.060	С	0.995	0.592	3.045		
С	0.039	0.311	4.202	С	0.419	0.076	4.197		
С	-0.248	-1.044	4.086	С	-0.713	-0.723	4.104		
С	-0.358	-1.633	2.829	С	-1.272	-1.009	2.860		
С	-0.182	-0.870	1.686	С	-0.700	-0.496	1.707		
Н	0.440	2.130	3.111	Н	1.872	1.215	3.076		
Н	0.124	0.764	5.174	Н	0.848	0.295	5.159		
Н	-0.386	-1.641	4.971	Н	-1.162	-1.125	4.996		
Н	-0.580	-2.682	2.745	Н	-2.149	-1.629	2.794		
Н	-0.263	-1.308	0.707	Н	-1.119	-0.707	0.739		
Ν	0.218	0.913	-0.444	Ν	0.666	0.673	-0.442		
С	0.118	0.403	-1.688	С	0.172	0.432	-1.666		
С	1.274	0.052	-2.403	С	0.615	-0.680	-2.408		
С	1.155	-0.472	-3.678	С	0.098	-0.908	-3.671		
С	-0.085	-0.641	-4.278	С	-0.853	-0.063	-4.230		
С	-1.223	-0.281	-3.569	С	-1.284	1.035	-3.494		
С	-1.140	0.228	-2.284	С	-0.790	1.295	-2.228		
Н	2.239	0.196	-1.953	Н	1.354	-1.336	-1.986		
Н	2.052	-0.742	-4.211	Н	0.450	-1.762	-4.225		
Н	-0.164	-1.042	-5.272	Н	-1.245	-0.252	-5.213		
Н	-2.196	-0.401	-4.015	Н	-2.018	1.705	-3.909		
Н	-2.027	0.498	-1.741	Н	-1.125	2.149	-1.669		

			TS-pla	nar-inv	S_0			
		SF-TDDFT		TDDFT				
N	0.000	1.386	0.660	N	0.000	1.403	0.668	
С	0.000	0.512	1.821	С	0.000	0.517	1.811	
С	0.000	1.182	3.037	С	0.000	1.180	3.034	
С	0.000	0.466	4.224	С	0.000	0.460	4.218	
С	0.000	-0.924	4.194	С	0.000	-0.930	4.183	
С	0.000	-1.593	2.974	С	0.000	-1.593	2.959	
С	0.000	-0.876	1.788	С	0.000	-0.872	1.775	
Н	0.000	2.258	3.023	Н	0.000	2.256	3.023	
Н	0.000	0.985	5.167	Н	0.000	0.976	5.163	
Н	0.000	-1.483	5.114	Н	0.000	-1.493	5.100	
Н	0.000	-2.669	2.952	Н	0.000	-2.670	2.932	
Н	0.000	-1.382	0.842	Н	0.000	-1.380	0.830	
Ν	0.000	0.906	-0.481	Ν	0.000	0.926	-0.483	
С	0.000	0.342	-1.729	С	0.000	0.350	-1.720	
С	0.000	1.192	-2.845	С	0.000	1.194	-2.844	
С	0.000	0.676	-4.130	С	0.000	0.672	-4.126	
С	0.000	-0.700	-4.324	С	0.000	-0.706	-4.313	
С	0.000	-1.556	-3.231	С	0.000	-1.558	-3.215	
С	0.000	-1.043	-1.944	С	0.000	-1.039	-1.930	
Н	0.000	2.251	-2.666	Н	0.000	2.255	-2.671	
Н	0.000	1.341	-4.975	Н	0.000	1.332	-4.975	
Н	0.000	-1.103	-5.322	Н	0.000	-1.114	-5.309	
Н	0.000	-2.622	-3.382	Н	0.000	-2.624	-3.361	
Н	0.000	-1.709	-1.102	Н	0.000	-1.703	-1.087	

		TS-rot S ₀		
		SF-TDDFT		
Ν	1.394	0.379	0.543	
С	0.567	0.099	1.604	
С	0.662	0.944	2.723	
С	-0.145	0.732	3.822	
С	-1.049	-0.328	3.834	
С	-1.137	-1.179	2.735	
С	-0.340	-0.976	1.626	
Н	1.373	1.749	2.690	
Н	-0.072	1.386	4.674	
Η	-1.674	-0.494	4.695	
Η	-1.827	-2.005	2.751	
Η	-0.392	-1.639	0.781	
Ν	1.398	-0.356	-0.546	
С	0.564	-0.089	-1.604	
С	0.668	-0.932	-2.723	
С	-0.144	-0.733	-3.820	
С	-1.064	0.313	-3.831	
С	-1.162	1.163	-2.732	
С	-0.360	0.973	-1.624	
Η	1.392	-1.727	-2.692	
Η	-0.063	-1.386	-4.672	
Η	-1.693	0.470	-4.690	
Н	-1.865	1.978	-2.746	
Η	-0.420	1.635	-0.780	

			TS	rot S ₁					
SF-TDDFT					TDDFT				
N	1.086	0.581	0.540	N	1.149	0.549	0.543		
С	0.444	0.207	1.721	С	0.470	0.200	1.712		
С	0.474	1.116	2.781	С	0.519	1.103	2.777		
С	-0.151	0.801	3.974	С	-0.137	0.807	3.959		
С	-0.798	-0.423	4.124	С	-0.835	-0.390	4.093		
С	-0.815	-1.332	3.072	С	-0.872	-1.293	3.036		
С	-0.196	-1.028	1.872	С	-0.222	-1.009	1.847		
Н	0.984	2.053	2.643	Н	1.068	2.018	2.651		
Н	-0.133	1.504	4.788	Н	-0.104	1.506	4.777		
Н	-1.279	-0.667	5.055	Н	-1.341	-0.618	5.015		
Н	-1.310	-2.281	3.189	Н	-1.407	-2.221	3.140		
Н	-0.189	-1.725	1.054	Н	-0.232	-1.703	1.026		
Ν	1.133	-0.130	-0.497	Ν	1.196	-0.139	-0.504		
С	0.469	-0.034	-1.705	С	0.502	-0.042	-1.701		
С	0.788	-0.937	-2.722	С	0.841	-0.907	-2.744		
С	0.127	-0.867	-3.935	С	0.153	-0.840	-3.943		
С	-0.844	0.104	-4.157	С	-0.868	0.089	-4.121		
С	-1.151	1.008	-3.148	С	-1.197	0.954	-3.085		
С	-0.507	0.946	-1.923	С	-0.524	0.894	-1.874		
Н	1.546	-1.678	-2.541	Н	1.638	-1.613	-2.595		
Н	0.373	-1.568	-4.713	Н	0.416	-1.510	-4.743		
Н	-1.351	0.157	-5.104	Н	-1.396	0.140	-5.057		
Н	-1.896	1.767	-3.313	Н	-1.981	1.680	-3.218		
Н	-0.734	1.645	-1.138	Н	-0.767	1.565	-1.069		