Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2018

Supplementary Information for

"Improved visible-light absorbance of monolayer MoS_2 on AlN

substrate and angle-dependent electronic structures"

Feifei Li², Changmin Shi^{1,*}, Dongchao Wang¹, Guangliang Cui¹, Pinhua Zhang¹, Li Lv¹ and Li

Chen¹

¹Institute of Condensed Matter Physics, School of Physics and Electric Engineering, Linyi

University, Linyi 276000, China

²State-owned Assets and Laboratory Management, Linyi University, Linyi 276000, China

E-mail addresses: scm ff@163.com, shichangmin@lyu.edu.cn (C. M. Shi).

Fig. 1S The top views of (a) Mo- H_N , (b) S-N, (c) S- H_N and (d) S- H_{Al} stacked MoS₂/AlN heterostructures with lattice match model.

Fig. 2S The electronic band structures of (a) Mo-N and (b) Mo- H_N stacked hetero-structures with HSE06 and HSE06-SOC formations.

Fig. 3S The electronic band structures of (a) Mo- H_N , (b) S-N, (c) S- H_N and (d) S- H_{Al} stacked MoS₂/AlN hetero-structures with lattice match model.

Fig. 4S The electronic band structures of MoS_2/AIN hetero-structures with HSE06 and HSE06-SOC formations in Mo-N stacking configurations for different lattice constants from a = 3.118Å to a = 3.168Å.

Fig. 5S The dependences of electronic band structures of $Mo-H_{A1}$ stacked MoS_2/AIN heterostructures on strains from a=3.118Å to a=3.168Å.

Fig. 6S The partial decomposed charge density of VB and CB of Mo-N stacked MoS_2/AIN hetero-

structures with HSE06 and HSE06-SOC formations.

Fig. 7S The partial orbitals of (a) Al atoms with PBE formation and (b) S atoms with PBE formation.