Supporting Information

Phosphomolybdic Acid Supported Single-Metal-Atom Catalysis in CO Oxidation:

First-Principles Calculations

Ming'an Yu, Yingxin Feng, Liye Gao and Sen Lin*

State Key Laboratory of Photocatalysis on Energy and Environment, College of

Chemistry, Fuzhou University, Fuzhou 350002, China

*Corresponding author. Email: <u>slin@fzu.edu.cn</u>

	Pt-PMA	Fe-PMA	Ir-PMA	Rh-PMA	Ru-PMA					
State ii										
d₀-₀ (Å)	1.27	1.27	1.28	1.26	1.26					
<i>d</i> _{M-O} (Å)	2.10, 2.88	1.86, 2.80	1.93, 2.84	1.93, 2.82	1.91, 2.98					
State iii										
d _{M−C} (Å)	1.91	2.00	3.07	2.07	2.07					
d _{C-0} (Å)	1.69	1.15	0.98	1.16	1.16					
d₀-₀ (Å)	1.37	1.34	2.06	1.36	1.36					
E_{b-O} (eV)	0.12	-0.87	-1.41	-0.65	-2.78					
State v										
<i>d</i> _{C-0} (Å)	1.14	1.16	1.15	1.14	1.14					
State vi										
d _{M-C} (Å)	2.29	2.43	3.27	1.96	1.84					

Table S1 Structure parameters for the reaction intermediates of CO oxidation

 following LH mechanism on *M*-PMAs (*M*=Pt, Fe, Ir, Rh and Ru).

Fig. S1 Corresponding spin-polarized LDOSs of *M*-3d and neighboring O-2*p* orbitals of *M*-PMA (M = Pt, Au, Co, Fe, Ir, Ni, Pd, Ag, Rh, Cu, Os and Ru). Black and red curves denote *d* orbitals of metal and *p* orbitals of O, respectively. Fermi level is set to 0 eV.

Table S2 Calculated M-O -distances (d/Å) and $\angle OMO$ (°) for M at the anchoring

М	<i>d_{M-0}</i> (Å)	d_{M-O} (CO)	$d_{M-O}(\mathbf{O}_2)$	<i>∠0M0</i>	<i>∠0M0</i> (CO)	∠ <i>OMO</i> (O ₂)
Pt	1.94, 1.94,	1.98, 2.16,	2.00, 2.00,	87.3, 87.5,	78.6, 78.1,	76.4, 76.8,
	2.04, 2.04	2.10, 2.08	2.04, 2.10	87.5, 87.4	77.5, 78.2	77.4, 76.9
Au	2.00, 2.00,	2.00, 2.08,	1.98, 1.95,	88.2, 88.2,	78.1, 78.6,	86.0, 85.8,
	2.02, 2.02	2.16, 2.10	2.04, 2.04,	88.2, 88.2	77.5, 78.2	86.0, 86.1
Со	1.81, 1.81,	1.83, 1.83,	1.81, 1.81,	87.9, 87.9,	87.4, 87.4,	84.2, 84.2,
	1.83, 1.83	1.89, 1.88	1.93, 1.93	87.9, 87.9	87.1, 87.1	84.3, 84.3
Cu	1.82, 1.82,	1.84, 1.84,	1.81, 1.82,	89.3, 89.3,	88.3, 87.8,	89.7, 89.5,
	1.84, 1.84	1.85, 1.86	1.82, 1.83	89.3, 89.3	88.1, 88.3	89.8, 90.0
Fe	1.81, 1.81,	1.81, 1.82,	1.88, 1.88,	88.6, 88.6,	88.3, 88.3,	82.0, 82.0,
	1.84, 1.84	1.84, 1.84	1.91, 1.91	88.6, 88.6	88.4, 88.3	81.8, 81.8
Ir	1.86, 1.85,	1.95, 1.98,	2.00, 2.00,	80.1, 85.3,	81.1, 80.6,	78.7, 78.8,
	2.06, 2.04	2.07, 2.08	2.03, 2.00	85.3, 80.2	78.8, 79.2	78.7, 78.6
Ni	1.78, 1.78,	1.86, 1.86,	1.77, 1.77,	88.6, 88.6,	86.3, 86.4,	89.7, 89.6,
	1.87, 1.87	1.89, 1.89	1.88, 1.88	88.6, 88.6	86.2, 86.5	89.5, 89.6
Os	1.88, 1.86,	2.08, 2.08,	1.87, 1.88,	79.5, 82.2,	87.0, 91.1,	81.0, 80.7,
	1.96, 2.01	2.11, 2.08	2.03, 2.04	82.2,78.8	90.8, 87.6	81.2, 80.6
Pd	1.94, 1.94,	1.95, 2.15,	1.97, 1.99,	85.7, 85.7,	77.4, 77.6,	81.9, 81.6,
	2.04, 2.04	2.10, 2.11	2.06, 2.07	85.7, 85.7	78.9, 78.8	81.1, 82.5
Ag	2.01, 2.01,	2.13, 2.16,	2.01, 2.01,	86.9, 86.9,	78.3, 77.7,	86.8, 86.8,
	2.02, 2.02	2.11, 2.14	2.02, 2.02	86.9, 86.9	77.3, 78.5	86.8, 86.8
Rh	1.88, 1.88,	1.99, 1.99,	1.97, 1.96,	82.3, 82.3,	85.1, 87.1,	79.8, 78.5,
	2.08, 2.08	2.03, 2.03	2.05, 2.04	82.3, 82.3	84.8, 87.4	80.0, 80.0
Ru	1.90, 1.90,	1.97, 2.02,	2.00, 2.00,	80.8, 82.8,	79.2, 78.6,	78.6, 78.7,
	2.03, 2.03	2.02, 2.02	2.01, 2.03,	82.8, 80.9	78.5, 79.3	78.6, 78.7

sites of the *M*-PMA, CO-M-PMA and O₂-M-PMA systems.

Fig. S2 Free energy $(\triangle G)$ profile with all reaction steps of CO oxidation on M-

PMA. ΔG is obtained using $\Delta G = \Delta E - T\Delta S$, where ΔE is the total energy change directly from DFT calculations, ΔS denotes the entropy change, and the zero point energies (*ZPEs*) are assumed to be negligible. The entropies of the adsorbed state are also thought to be negligible while the ΔS values of the gases are obtained from the reference (P. Atkins and J. Paula, in Atkins' Physical Chemistry, ed. W. H. Freeman and Company, New York, 2006, pp. 993–1001).