# Electronic Supplementary Information of

# Energy Loss Analysis in Photoelectrochemical Water Splitting: A Case Study of Hematite Photoanode

Zhiliang Wang, Miaoqiang Lyu, Peng Chen, Songcan Wang and Lianzhou Wang\*

Nanomaterials Centre, School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology The University of Queensland, QLD 4072 (Australia)

AUTHOR INFORMATION

#### **Corresponding Author**

\*(Lianzhou Wang). E-mail: l.wang@uq.edu.au

### Net photocurrent

The net photocurrent used in Figure 1 is calculated by Eq. S1

 $j = j_{light} - j_{dark}$ 

(Eq. S1)

where j is the net photocurrent,  $j_{light}$  and  $j_{dark}$  is the current recorded under light or dark at the same scan rate.

## **Fill factor**

The item of fill factor (FF) is normally used in solar cell which is defined as the ratio of maximum output power over the theoretical power ( $j_{sc}*V_{OC}$ , determined by short circuit current ( $j_{sc}$ ) and open circuit potential ( $V_{OC}$ ))

In the PEC system, the FF in Scheme S1 is usually defined as:<sup>1,2</sup>

$$FF = \frac{j_{\max}(E_{redox} - E_{\max})}{j_{redox}(_{redox} - E_{onset})}$$
(Eq. S2)

Here  $(j_{max}, E_{max})$  is the point where there is the highest solar conversion efficiency,  $E_{redox}$  represents the redox potential of the reactant, which is 1.23 V vs RHE for water splitting. And  $j_{redox}$  is the photocurrent at the potential of  $E_{redox}$ .



Scheme S1. The definition of fill factor (FF) for PEC research.



Figure S1 (a) The XRD pattern and (b) absorption spectrum of hematite photoelectrode.



**Figure S2.** (a) The photocurrent-potential curves recorded under different intensity of monolight with a wavelength of 460 nm. (b) The photocurrent-light intensity curves under different bias.



**Figure S3.** (a) The equivalent circuit of the photoelectrochemical process on hematite photoanode.  $\mathbf{R}_{s}$  is the serial resistance generated by the electrode contact and electrolyte.  $\mathbf{C}_{sc}$  is the space charge layer capacitance.  $\mathbf{R}_{ss}$  is the resistance for charge capture by surface states.  $\mathbf{R}_{ct}$ is the charge transfer resistance for water oxidation reaction. (b) The change of charge transfer resistance with the applied potential. The light intensity is 1 Sun. (c) The change of charge transfer resistance with the light intensity. The applied bias is 1.2 V<sub>RHE</sub>.



**Figure S4.** The schematic illustration of the charge transfer process on hematite.  $k_r$  and  $k_t$  is the rate constant of charge recombination and transfer process induced by the surface states. Adapted from Ref. 3.



**Figure S5.** The schematic illustration of photovoltage (PV) generated during a PEC process. It is the voltage difference at the same current between dark and illuminated condition.



**Figure S6.** An illustration of how the j-E of PEC (a) can be decoupled into j-V of PV and j-E of EC process (b). The PV in (a) is indeed equal to that in  $E_{output}$  of j-V. And the  $E_{appl}$  in (b) is the applied bias of j-E in (a).



**Figure S7.** The Tafel plot of  $Fe_2O_3$  and NiFeP electrode. The much smaller Tafel slope and overpotential of NiFeP suggests profoundly better reaction kinetic than Fe2O3.



**Figure S8.** The equivalent circuit of solar cell.  $J_0$  is the ideal current source.  $R_{sh}$  and  $R_s$  are the shunt resistance and serial resistance, respectively.

|          | Short circuit current J <sub>SC</sub> / mA | Open circuit voltage<br>V <sub>OC</sub> / V | Fill factor<br>FF             |
|----------|--------------------------------------------|---------------------------------------------|-------------------------------|
| Curve I  | 3.5                                        | 1.0                                         | 0.85                          |
| Curve II | 3.0                                        | 0.8                                         | 0.37                          |
|          | Overpotential<br>η(1 mA) / mV              | Tafel slope / mV dec <sup>-1</sup>          | Exchange current $(j_0) / mA$ |
| Curve i  | 400                                        | 59                                          | 10-3                          |
| Curve ii | 534                                        | 166                                         | 3*10-4                        |

Table S1. The parameters for numeric simulation in Figure 4a.

Table S2. The measured  $j_{sc},\,V_{oc},\,FF$  and PCE of the two perovskite solar cells.

|       | $j_{sc}$ / mA | V <sub>oc</sub> / V | FF    | PCE / % |
|-------|---------------|---------------------|-------|---------|
| psc-1 | 3.6           | 1                   | 0.675 | 14.6    |
| psc-2 | 2.5           | 1.04                | 0.654 | 10.3    |

The area of the solar cell is  $0.165 \text{ cm}^2$ . And the light intensity is  $100 \text{ mW cm}^2$  (AM 1.5 G).

#### **Reference:**

- Coridan, R. H.; Nielander, A. C.; Francis, S. A.; McDowell, M. T.; Dix, V.; Chatman, S. M.; Lewis, N. S. Methods for comparing the performance of energy-conversion systems for use in solar fuels and solar electricity generation. *Energy Environ. Sci.* 2015, *8*, 2886-2901.
- (2) Kim, T. W.; Choi, K.-S. Nanoporous BiVO<sub>4</sub> photoanodes with dual-layer oxygen evolution catalysts for solar water splitting. *Science* **2014**, 1245026.
- (3) Wijayantha, K. U.; Saremi-Yarahmadi, S.; Peter, L. M. Kinetics of oxygen evolution at α-Fe<sub>2</sub>O<sub>3</sub> photoanodes: a study by photoelectrochemical impedance spectroscopy. *Phys. Chem. Chem.Phys.* 2011, *13*, 5264-5270.