Unraveling the enigma of ultrafast excited state relaxation in nonemissive aggregating conjugated polymers

Benjamin D. Datko, Maksim Livshits, Zhen Zhang, Dana M. Portlock, Yang Qin, Jeffrey Rack, John K. Grey

Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, NM 87131

SUPPORTING INFORMATION

Figure S1. Relative Raman excitation profiles for P3DSV and P3DTV for the three largest displaced skeletal modes (estimated error ~20%).

Figure S2. Resonance Raman spectra of P3DSV and P3DTV thin films excited at 647 nm.

Figure S3. Cross-correlation overlap functions of the 1580 cm⁻¹ mode for the fundamental (0-1) and higher overtone (0-2 and 0-3) transitions. b) Potential energy surface diagram illustrating resonance Raman processes in PTV systems.

Transient Absorption Spectroscopy (TAS) fitting:

Data analysis for pump probe experiments was conducted in Surface Xplorer V4.2 (Ultrafast Systems). All pump probe lifetimes were fit to Equation S1. The IRF is the instrument response which is collected independently from pure solvent and fit using the solvent response function. An average solvent response is then fixed into the algorithm.

$$y = e^{-\left(\frac{t-t_0}{t_p}\right)^2} + \Sigma_i A_i e^{t-t_0/t_i}$$
, where $t_p = \frac{IRF}{2*ln2}$ Equation S1

Principal component analysis was conducted by Singular Value Decomposition using the Surface Xplorer SVD function. The resulting kinetics were then fit independently using Equation S1.

Figure S4. a) Electronic absorption spectrum for P3DTV 0.15 mg/L solution in chlorobenzene prepared under an Argon atmosphere. Transient absorption spectra collected at 0.3 ps (black), 0.75 ps (red), 1.5 ps (blue), 3 ps (green), 8 ps (brown), and 50 ps (orange) intervals with pump energies of b) 2.72 eV (455 nm), c) 2.50 eV (495 nm), d) 2.1 eV (590 nm), and e) 1.9 eV (652 nm).

Figure S5. A) Electronic absorption spectrum for P3DSV 0.2 mg/L solution in chlorobenzene prepared under an Argon atmosphere. B) Transient Absorption Spectra collected at 0.3 ps (black), 0.75 ps (red), 1.5 ps (blue), 3 ps (green), 8 ps (brown), and 50 ps (orange) following a 455 nm excitation. C) Transient Absorption Spectra following a 652 nm excitation (time delays are the same as Figure S3).

Figure S6. Single wavelength and global fitting kinetics of P3DTV in argon purged chlorobenzene post excitation at 652 nm. The experimental data is presented in black with the corresponding fitting in red. Fit parameters are presented in Table S1.

Figure S7. Single wavelength and global fitting kinetics of P3DTV in argon purged chlorobenzene post excitation at 590 nm. The experimental data is presented in black with the corresponding fit in red. Fitting results are presented in Table S1

Figure S8. Single wavelength and global fitting kinetics of P3DTV in argon purged chlorobenzene post excitation at 495 nm. The experimental data is presented in black with the corresponding fitting in red. Fit parameters are presented in Table S1.

Figure S9. Single wavelength and global fitting kinetics of P3DTV in argon purged chlorobenzene post excitation at 455 nm. The experimental data is presented in black with the corresponding fitting in red. Fit parameters are presented in Table S1.

Figure S10. Single wavelength and global fitting kinetics of P3DSV in argon purged chlorobenzene post excitation at 650 nm. The experimental data is presented in black with the corresponding fitting in red. Fit parameters are presented in Table S1.

Figure S11. Single wavelength and global fitting kinetics of P3DSV in argon purged chlorobenzene post excitation at 445 nm. The experimental data is presented in black with the corresponding fitting in red. Fit parameters are presented in Table S1.

P3DTV ex 652	Principle Component 1	Principle Component 2	592 nm	640 nm	680 nm	725 nm
t ₀	0.28	-	0.29	0.26	0.35	0.29
IRF	0.15	-	0.15	0.15	0.15	0.15
A ₁		-			$-0.011 \pm 0.002e$	-0.007 ± 0.0007
τ_1		-			0.54 ± 0.10	0.18 ± 0.03
A 2	-0.129 ± 0.002	-	-0.0454 ± 0.0009	-0.0594 ± 0.0007	0.022 ± 0.002	0.0193 ± 0.0004
τ2	1.51 ± 0.06	-	1.54 ± 0.07	1.45 ± 0.04	2.1 ± 0.2	1.46 ± 0.05
A 3	-0.006 ± 0.002		-0.0018 ± 0.0008	-0.0036 ± 0.0007	0.0013 ± 0.0007	0.0008 ± 0.0001
$ au_3$	80 ± 100		80 ± 120	58 ± 30	15.5 ± 8	45 ± 20
P3DTV	Principle	Principle	586 nm	635 nm	676 nm	725 nm
ex590	Component 1	Component 2	500 mm	055 mm	070 IIII	725 1111
to	0.248 ± 0.008	0.139 ± 0.003	0.16	0.14	0.32	0.27
IRF	0.15	0.15	0.15	0.15	0.15	0.15
A ₁		-0.6 ± 0.2	0.019 ± 0.002	0.024 ± 0.005	-0.0106 ± 0.0006	-0.0126 ± 0.0005
τ_1		2.1 ± 0.2	0.28 ± 0.05	0.38 ± 0.09	0.40 ± 0.03	0.2 ± 0.02
A ₂	0.137 ± 0.002	0.8 ± 0.2	-0.063 ± 0.002	-0.074 ± 0.006	0.0236 ± 0.0006	0.0283 ± 0.0004
$ au_2$	1.56 ± 0.05	1.1 ± 0.1	1.35 ± 0.05	1.19 ± 0.07	2.4 ± 0.1	1.36 ± 0.03
A 3	0.007 ± 0.002	$4.8\pm0.9a$	-0.0040 ± 0.0004	-0.005 ± 0.0004	0.0016 ± 0.0003	0.0018 ± 0.0001
τ3	60 ± 35	$0.075\pm0.004a$	28 ± 4	36 ± 5	23 ± 5	38 ± 6
D2DTV	Duinainla	D				
rspiv	Frincipie	Principle	595 nm	625 nm	676 nm	725 mm
ex495	Component 1	Component 2	585 nm	635 nm	676 nm	725 nm
ex495 t ₀	$\frac{\text{Component 1}}{0.12 \pm 0.01}$	$\frac{\text{Component 2}}{0.098 \pm 0.004}$	585 nm 0.13	635 nm 0.09	676 nm 0.27	725 nm 0.15
ex495 t ₀ IRF	$\frac{\text{Component 1}}{0.12 \pm 0.01}$ 0.15	$\frac{\text{Component 2}}{0.098 \pm 0.004}$ 0.15	0.13 0.15	635 nm 0.09 0.15	676 nm 0.27 0.15	0.15 0.15
t ₀ IRF	$\frac{\text{Component 1}}{0.12 \pm 0.01}$ 0.15	Component 2 0.098 ± 0.004 0.15 1.0 ± 0.1	$ \begin{array}{r} 585 \text{ nm} \\ 0.13 \\ 0.15 \\ 0.01 \pm 0.02 \end{array} $	$\begin{array}{c} 635 \text{ nm} \\ \hline 0.09 \\ 0.15 \\ 0.013 \pm 0.008 \end{array}$	0.27 0.15 -0.0069 ± 0.0003	$\begin{array}{c} \textbf{725 nm} \\ 0.15 \\ 0.15 \\ -0.012 \pm 0.001 \end{array}$
ex495 t ₀ IRF A ₁ τ ₁	$\frac{\text{Component 1}}{0.12 \pm 0.01}$ 0.15	Ormetpie Component 2 0.098 ± 0.004 0.15 1.0 ± 0.1 0.16 ± 0.02	$ \begin{array}{c} 585 \text{ nm} \\ 0.13 \\ 0.15 \\ 0.01 \pm 0.02 \\ 0.7 \pm 0.5 \\ \end{array} $	$ \begin{array}{r} 635 \text{ nm} \\ 0.09 \\ 0.15 \\ 0.013 \pm 0.008 \\ 0.5 \pm 0.2 \\ \end{array} $	$\begin{array}{c} 676 \text{ nm} \\ \hline 0.27 \\ 0.15 \\ -0.0069 \pm \\ 0.0003 \\ 0.2 \pm 0.02 \end{array}$	$\begin{array}{c} & 0.15 \\ & 0.15 \\ -0.012 \pm 0.001 \\ & 0.2 \pm 0.03 \end{array}$
ex495 t ₀ IRF A ₁ τ ₁ A ₂	$\begin{array}{c} \text{Component 1} \\ 0.12 \pm 0.01 \\ 0.15 \\ \end{array}$	Ormetpie $Component 2$ 0.098 ± 0.004 0.15 1.0 ± 0.1 0.16 ± 0.02 0.4 ± 0.1	$ \begin{array}{r} 585 \text{ nm} \\ 0.13 \\ 0.15 \\ 0.01 \pm 0.02 \\ 0.7 \pm 0.5 \\ -0.029 \pm 0.026 \\ \end{array} $	$\begin{array}{c} 635 \text{ nm} \\ \hline 0.09 \\ 0.15 \\ 0.013 \pm 0.008 \\ 0.5 \pm 0.2 \\ -0.033 \pm 0.009 \end{array}$	$\begin{array}{c} \textbf{676 nm} \\ 0.27 \\ 0.15 \\ -0.0069 \pm \\ 0.0003 \\ 0.2 \pm 0.02 \\ 0.0078 \pm 0.0001 \end{array}$	$\begin{array}{c} \textbf{725 nm} \\ 0.15 \\ 0.15 \\ -0.012 \pm 0.001 \\ 0.2 \pm 0.03 \\ 0.0096 \pm 0.0005 \end{array}$
rsDTv ex495 t₀ IRF A₁ τ₁ A₂ τ₂	$\begin{array}{r} \text{Principle} \\ \hline \text{Component 1} \\ \hline 0.12 \pm 0.01 \\ 0.15 \\ \hline 0.146 \pm 0.002 \\ \hline 1.64 \pm 0.05 \end{array}$	Ormetpie Component 2 0.098 ± 0.004 0.15 1.0 ± 0.1 0.16 ± 0.02 0.4 ± 0.1 1.0 ± 0.4	$ \begin{array}{c} 585 \text{ nm} \\ 0.13 \\ 0.15 \\ 0.01 \pm 0.02 \\ 0.7 \pm 0.5 \\ -0.029 \pm 0.026 \\ 1.2 \pm 0.4 \\ \end{array} $	$\begin{array}{c} 635 \text{ nm} \\ \hline 0.09 \\ 0.15 \\ 0.013 \pm 0.008 \\ 0.5 \pm 0.2 \\ -0.033 \pm 0.009 \\ 1.1 \pm 0.1 \\ \end{array}$	$\begin{array}{c} \textbf{676 nm} \\ 0.27 \\ 0.15 \\ -0.0069 \pm \\ 0.0003 \\ 0.2 \pm 0.02 \\ 0.0078 \pm 0.0001 \\ 2.7 \pm 0.1 \end{array}$	$\begin{array}{c} \textbf{725 nm} \\ 0.15 \\ 0.15 \\ \textbf{-0.012} \pm 0.001 \\ 0.2 \pm 0.03 \\ 0.0096 \pm 0.0005 \\ 1.4 \pm 0.1 \end{array}$
rsDTv ex495 t₀ IRF A₁ τ₁ A₂ τ₂ A₃	$\begin{array}{c} \text{Component 1} \\ \hline 0.12 \pm 0.01 \\ 0.15 \\ \hline 0.146 \pm 0.002 \\ 1.64 \pm 0.05 \\ \hline 0.004 \pm 0.002 \end{array}$	Ormetpie 0.098 ± 0.004 0.15 1.0 ± 0.1 0.16 ± 0.02 0.4 ± 0.1 1.0 ± 0.4 -0.3 ± 0.2	$\begin{array}{c} 585 \text{ nm} \\ 0.13 \\ 0.15 \\ 0.01 \pm 0.02 \\ 0.7 \pm 0.5 \\ -0.029 \pm 0.026 \\ 1.2 \pm 0.4 \\ -0.0013 \pm \\ 0.0004 \end{array}$	$\begin{array}{c} 635 \text{ nm} \\ \hline 0.09 \\ 0.15 \\ 0.013 \pm 0.008 \\ \hline 0.5 \pm 0.2 \\ -0.033 \pm 0.009 \\ 1.1 \pm 0.1 \\ -0.0011 \pm \\ 0.0002 \end{array}$	$\begin{array}{c} \textbf{676 nm} \\ 0.27 \\ 0.15 \\ -0.0069 \pm \\ 0.0003 \\ 0.2 \pm 0.02 \\ 0.0078 \pm 0.0001 \\ 2.7 \pm 0.1 \\ 0.0004 \pm 0.0001 \end{array}$	$\begin{array}{c} \textbf{725 nm} \\ 0.15 \\ 0.15 \\ \textbf{-0.012 \pm 0.001} \\ 0.2 \pm 0.03 \\ 0.0096 \pm 0.0005 \\ 1.4 \pm 0.1 \\ 0.0006 \pm 0.0002 \end{array}$
rsDTv ex495 t₀ IRF A1 τ1 A2 τ2 A3 τ3	$\begin{array}{c} \text{Principle} \\ \hline \text{Component 1} \\ \hline 0.12 \pm 0.01 \\ 0.15 \\ \hline 0.146 \pm 0.002 \\ \hline 1.64 \pm 0.005 \\ \hline 0.004 \pm 0.002 \\ \hline 60 \pm 70 \\ \end{array}$	Ormetiple Component 2 0.098 ± 0.004 0.15 1.0 ± 0.1 0.16 ± 0.02 0.4 ± 0.1 1.0 ± 0.4 -0.3 ± 0.2 2.6 ± 0.6	$\begin{array}{c} 585 \text{ nm} \\ 0.13 \\ 0.15 \\ 0.01 \pm 0.02 \\ 0.7 \pm 0.5 \\ -0.029 \pm 0.026 \\ 1.2 \pm 0.4 \\ -0.0013 \pm \\ 0.0004 \\ 17.0 \pm 6 \end{array}$	$\begin{array}{c} 635 \text{ nm} \\ \hline 0.09 \\ 0.15 \\ 0.013 \pm 0.008 \\ 0.5 \pm 0.2 \\ -0.033 \pm 0.009 \\ 1.1 \pm 0.1 \\ -0.0011 \pm \\ 0.0002 \\ 26 \pm 6 \end{array}$	$\begin{array}{c} 676 \text{ nm} \\ 0.27 \\ 0.15 \\ -0.0069 \pm \\ 0.0003 \\ 0.2 \pm 0.02 \\ 0.0078 \pm 0.0001 \\ 2.7 \pm 0.1 \\ 0.0004 \pm 0.0001 \\ 31 \pm 18 \end{array}$	$\begin{array}{c} \textbf{725 nm} \\ 0.15 \\ 0.15 \\ \textbf{-0.012 \pm 0.001} \\ 0.2 \pm 0.03 \\ 0.0096 \pm 0.0005 \\ 1.4 \pm 0.1 \\ 0.0006 \pm 0.0002 \\ 25 \pm 13 \end{array}$
rsb1v ex495 t₀ IRF A₁ τ₁ A₂ τ₂ A₃ τ₃	$\begin{array}{c} \text{Component 1} \\ \hline 0.12 \pm 0.01 \\ 0.15 \\ \hline 0.146 \pm 0.002 \\ 1.64 \pm 0.05 \\ 0.004 \pm 0.002 \\ \hline 60 \pm 70 \\ \hline \end{array}$	Ormetpie Component 2 0.098 ± 0.004 0.15 1.0 ± 0.1 0.16 ± 0.02 0.4 ± 0.1 1.0 ± 0.4 -0.3 ± 0.2 2.6 ± 0.6	$\begin{array}{c} 585 \text{ nm} \\ 0.13 \\ 0.15 \\ 0.01 \pm 0.02 \\ 0.7 \pm 0.5 \\ -0.029 \pm 0.026 \\ 1.2 \pm 0.4 \\ -0.0013 \pm \\ 0.0004 \\ 17.0 \pm 6 \end{array}$	$\begin{array}{c} 635 \text{ nm} \\ \hline 0.09 \\ 0.15 \\ 0.013 \pm 0.008 \\ 0.5 \pm 0.2 \\ -0.033 \pm 0.009 \\ 1.1 \pm 0.1 \\ -0.0011 \pm \\ 0.0002 \\ 26 \pm 6 \end{array}$	$\begin{array}{c} 676 \text{ nm} \\ \hline 0.27 \\ 0.15 \\ -0.0069 \pm \\ 0.0003 \\ 0.2 \pm 0.02 \\ 0.0078 \pm 0.0001 \\ 2.7 \pm 0.1 \\ 0.0004 \pm 0.0001 \\ 31 \pm 18 \end{array}$	$\begin{array}{c} \textbf{725 nm} \\ 0.15 \\ 0.15 \\ \textbf{-0.012 \pm 0.001} \\ 0.2 \pm 0.03 \\ 0.0096 \pm 0.0005 \\ 1.4 \pm 0.1 \\ 0.0006 \pm 0.0002 \\ 25 \pm 13 \end{array}$
ex495 t ₀ IRF A ₁ τ ₁ A ₂ τ ₂ A ₃ τ ₃ P3DTV	$\begin{array}{r} \text{Principle} \\ \hline \text{Component 1} \\ 0.12 \pm 0.01 \\ 0.15 \\ \hline \end{array}$ $\begin{array}{r} 0.146 \pm 0.002 \\ 1.64 \pm 0.05 \\ 0.004 \pm 0.002 \\ \hline 60 \pm 70 \\ \hline \end{array}$ $\begin{array}{r} \text{Principle} \end{array}$	Principle Component 2 0.098 ± 0.004 0.15 1.0 ± 0.1 0.16 ± 0.02 0.4 ± 0.1 1.0 ± 0.4 -0.3 ± 0.2 2.6 ± 0.6 Principle	585 nm 0.13 0.15 0.01 ± 0.02 0.7 ± 0.5 -0.029 ± 0.026 1.2 ± 0.4 -0.0013 ± 0.0004 17.0 ± 6 588 pm	635 nm 0.09 0.15 0.013 ± 0.008 0.5 ± 0.2 -0.033 ± 0.009 1.1 ± 0.1 $-0.0011 \pm$ 0.0002 26 ± 6	$\begin{array}{c} 676 \text{ nm} \\ 0.27 \\ 0.15 \\ -0.0069 \pm \\ 0.0003 \\ 0.2 \pm 0.02 \\ 0.0078 \pm 0.0001 \\ 2.7 \pm 0.1 \\ 0.0004 \pm 0.0001 \\ 31 \pm 18 \end{array}$	725 nm 0.15 0.15 -0.012 \pm 0.001 0.2 \pm 0.03 0.0096 \pm 0.0005 1.4 \pm 0.1 0.0006 \pm 0.0002 25 \pm 13
P3DTV ex495 to IRF A1 T1 A2 T2 A3 T3 P3DTV ex450	Omega 0.12 ± 0.01 0.15 0.146 ± 0.002 1.64 ± 0.05 0.004 ± 0.002 60 ± 70	Principle Component 2 0.098 ± 0.004 0.15 1.0 ± 0.1 0.16 ± 0.02 0.4 ± 0.1 1.0 ± 0.4 -0.3 ± 0.2 2.6 ± 0.6	$ \begin{array}{r} 585 \text{ nm} \\ 0.13 \\ 0.15 \\ 0.01 \pm 0.02 \\ 0.7 \pm 0.5 \\ -0.029 \pm 0.026 \\ 1.2 \pm 0.4 \\ -0.0013 \pm \\ 0.0004 \\ 17.0 \pm 6 \\ \hline 588 \text{ nm} \end{array} $	$\begin{array}{c} 635 \text{ nm} \\ 0.09 \\ 0.15 \\ 0.013 \pm 0.008 \\ 0.5 \pm 0.2 \\ -0.033 \pm 0.009 \\ 1.1 \pm 0.1 \\ -0.0011 \pm \\ 0.0002 \\ 26 \pm 6 \end{array}$	$\begin{array}{c} 676 \text{ nm} \\ 0.27 \\ 0.15 \\ -0.0069 \pm \\ 0.0003 \\ 0.2 \pm 0.02 \\ 0.0078 \pm 0.0001 \\ 2.7 \pm 0.1 \\ 0.0004 \pm 0.0001 \\ 31 \pm 18 \end{array}$	725 nm 0.15 0.012 ± 0.001 0.2 ± 0.03 0.0096 ± 0.0005 1.4 ± 0.1 0.0006 ± 0.0002 25 ± 13
rsDTV ex495 t₀ IRF A1 τ1 A2 τ2 A3 τ3 P3DTV ex450 t₀	Omponent 1 0.12 ± 0.01 0.15 0.146 ± 0.002 1.64 ± 0.05 0.004 ± 0.002 60 ± 70 Principle Component 1 0.232 ± 0.006	Principle Component 2 0.098 ± 0.004 0.15 1.0 ± 0.1 0.16 ± 0.02 0.4 ± 0.1 1.0 ± 0.4 -0.3 ± 0.2 2.6 ± 0.6 Principle Component 2 0.027 ± 0.011	$\frac{585 \text{ nm}}{0.13}$ 0.13 0.15 0.01 ± 0.02 0.7 ± 0.5 -0.029 ± 0.026 1.2 ± 0.4 $-0.0013 \pm$ 0.0004 17.0 ± 6 $\frac{588 \text{ nm}}{0.19}$	$\begin{array}{c} 635 \text{ nm} \\ 0.09 \\ 0.15 \\ 0.013 \pm 0.008 \\ 0.5 \pm 0.2 \\ -0.033 \pm 0.009 \\ 1.1 \pm 0.1 \\ -0.0011 \pm \\ 0.0002 \\ 26 \pm 6 \\ \hline \\ 645 \text{ nm} \\ 0.10 \\ \end{array}$	676 nm 0.27 0.15 -0.0069 ± 0.0003 0.2 ± 0.02 0.0078 ± 0.0001 2.7 ± 0.1 0.0004 ± 0.0001 31 ± 18 686 nm 0.09	725 nm 0.15 0.15 -0.012 ± 0.001 0.2 ± 0.03 0.0096 ± 0.0005 1.4 ± 0.1 0.0006 ± 0.0002 25 ± 13 725 nm 0.12
rsb1v ex495 t₀ IRF A₁ τ₁ A₂ τ₂ A₃ τ₃ P3DTV ex450 t₀ IRF	Principle Component 1 0.12 ± 0.01 0.15 0.146 ± 0.002 1.64 ± 0.05 0.004 ± 0.002 60 ± 70 Principle Component 1 0.232 ± 0.006 0.15	Principle Component 2 0.098 ± 0.004 0.15 1.0 ± 0.1 0.16 ± 0.02 0.4 ± 0.1 1.0 ± 0.4 -0.3 ± 0.2 2.6 ± 0.6 Principle Component 2 0.027 ± 0.011 0.15	$ \begin{array}{r} 585 \text{ nm} \\ 0.13 \\ 0.15 \\ 0.01 \pm 0.02 \\ 0.7 \pm 0.5 \\ -0.029 \pm 0.026 \\ 1.2 \pm 0.4 \\ -0.0013 \pm \\ 0.0004 \\ 17.0 \pm 6 \\ \hline 588 \text{ nm} \\ 0.19 \\ 0.15 \\ \end{array} $	$\begin{array}{c} 635 \text{ nm} \\ 0.09 \\ 0.15 \\ 0.013 \pm 0.008 \\ 0.5 \pm 0.2 \\ -0.033 \pm 0.009 \\ 1.1 \pm 0.1 \\ -0.0011 \pm \\ 0.0002 \\ 26 \pm 6 \\ \hline \\ \hline \\ 645 \text{ nm} \\ 0.10 \\ 0.15 \\ \end{array}$	676 nm 0.27 0.15 -0.0069 ± 0.0003 0.2 ± 0.02 0.0078 ± 0.0001 2.7 ± 0.1 0.0004 ± 0.0001 31 ± 18 686 nm 0.09 0.15	$\begin{array}{c} \textbf{725 nm} \\ 0.15 \\ 0.15 \\ -0.012 \pm 0.001 \\ 0.2 \pm 0.03 \\ 0.0096 \pm 0.0005 \\ 1.4 \pm 0.1 \\ 0.0006 \pm 0.0002 \\ 25 \pm 13 \\ \hline \textbf{725 nm} \\ 0.12 \\ 0.15 \\ \end{array}$
r3DTV ex495 t0 IRF A1 τ1 A2 τ2 A3 τ3 P3DTV ex450 t0 IRF A1	Principle 0.12 ± 0.01 0.15 0.146 ± 0.002 1.64 ± 0.05 0.004 ± 0.002 60 ± 70 Principle Component 1 0.232 ± 0.006 0.15	Principle Component 2 0.098 ± 0.004 0.15 1.0 ± 0.1 0.16 ± 0.02 0.4 ± 0.1 1.0 ± 0.4 -0.3 ± 0.2 2.6 ± 0.6 Principle Component 2 0.027 ± 0.011 0.15 1.4 ± 1.6	$\frac{585 \text{ nm}}{0.13}$ 0.13 0.15 0.01 ± 0.02 0.7 ± 0.5 -0.029 ± 0.026 1.2 ± 0.4 $-0.0013 \pm$ 0.0004 17.0 ± 6 $\frac{588 \text{ nm}}{0.19}$ 0.19 0.15 0.0145 ± 0.0008	635 nm 0.09 0.15 0.013 ± 0.008 0.5 ± 0.2 -0.033 ± 0.009 1.1 ± 0.1 -0.0011 ± 0.0002 26 ± 6 6 645 nm 0.10 0.15 0.023 ± 0.001	676 nm 0.27 0.15 -0.0069 ± 0.0003 0.2 ± 0.02 0.0078 ± 0.0001 2.7 ± 0.1 0.0004 ± 0.0001 31 ± 18 686 nm 0.09 0.15 -0.0127 ± 0.0009	725 nm 0.15 0.15 -0.012 ± 0.001 0.2 ± 0.03 0.0096 ± 0.0005 1.4 ± 0.1 0.0006 ± 0.0002 25 ± 13 725 nm 0.12 0.12 0.15 -0.02 ± 0.01
r3DTV ex495 t0 IRF A1 τ1 A2 τ2 A3 τ3 P3DTV ex450 t0 IRF A1 τ1	Principle 0.12 ± 0.01 0.15 0.146 ± 0.002 1.64 ± 0.05 0.004 ± 0.002 60 ± 70 Principle Component 1 0.232 ± 0.006 0.15	Principle Component 2 0.098 ± 0.004 0.15 1.0 ± 0.1 0.16 ± 0.02 0.4 ± 0.1 1.0 ± 0.4 -0.3 ± 0.2 2.6 ± 0.6 Principle Component 2 0.027 ± 0.011 0.15 1.4 ± 1.6 0.66 ± 0.63	$\frac{585 \text{ nm}}{0.13}$ 0.13 0.01 ± 0.02 0.7 ± 0.5 -0.029 ± 0.026 1.2 ± 0.4 $-0.0013 \pm$ 0.0004 17.0 ± 6 $\frac{588 \text{ nm}}{0.19}$ 0.15 0.0145 ± 0.0008 0.20 ± 0.02	635 nm 0.09 0.15 0.013 ± 0.008 0.5 ± 0.2 -0.033 ± 0.009 1.1 ± 0.1 -0.0011 ± 0.0002 26 ± 6 645 nm 0.10 0.15 0.023 ± 0.001 0.20 ± 0.02	$\begin{array}{c} 676 \text{ nm} \\ 0.27 \\ 0.15 \\ -0.0069 \pm \\ 0.0003 \\ 0.2 \pm 0.02 \\ 0.0078 \pm 0.0001 \\ 2.7 \pm 0.1 \\ 0.0004 \pm 0.0001 \\ 31 \pm 18 \\ \hline \\ 686 \text{ nm} \\ \hline \\ 0.09 \\ 0.15 \\ -0.0127 \pm \\ 0.0009 \\ 0.37 \pm 0.04 \\ \end{array}$	725 nm 0.15 0.15 -0.012 ± 0.001 0.2 ± 0.03 0.0096 ± 0.0005 1.4 ± 0.1 0.0006 ± 0.0002 25 ± 13 725 nm 0.12 0.12 0.15 -0.02 ± 0.01 0.5 ± 0.1
$\begin{array}{c} r_{3} r_{3} \\ r_{4} \\ r_{1} \\ r_{1} \\ r_{1} \\ r_{2} \\ r_{2} \\ r_{3} \\ r_{3} \\ \hline \\ r_{3} \\ \hline \\ r_{3} \\ \hline \\ r_{3} \\ \hline \\ r_{4} \\ r_{1} \\ r_{1} \\ r_{1} \\ r_{2} \\ r_{2} \\ r_{3} \\ r_{4} \\ r_{1} \\ r_{1} \\ r_{2} \\ r_{2} \\ r_{3} \\ r_{4} \\ r_{1} \\ r_{1} \\ r_{2} \\ r_{2} \\ r_{4} \\ r_{1} \\ r_{1} \\ r_{2} \\ r_{2} \\ r_{4} \\ r_{1} \\ r_{1} \\ r_{2} \\ r_{4} \\ r_{2} \\ r_{4} \\ r_{1} \\ r_{1} \\ r_{1} \\ r_{2} \\ r_{4} \\ r_{1} \\ r_{1} \\ r_{1} \\ r_{2} \\ r_{4} \\ r_{2} \\ r_{4} \\ r_{1} \\ r_{1} \\ r_{1} \\ r_{2} \\ r_{4} \\ r_{1} \\ r_{1} \\ r_{2} \\ r$	$\frac{\text{Component 1}}{0.12 \pm 0.01}$ 0.12 ± 0.01 0.15 0.146 ± 0.002 1.64 ± 0.002 60 ± 70 $\frac{\text{Principle}}{\text{Component 1}}$ 0.232 ± 0.006 0.15 -0.124 ± 0.004	Principle Component 2 0.098 ± 0.004 0.15 1.0 ± 0.1 0.16 ± 0.02 0.4 ± 0.1 1.0 ± 0.4 -0.3 ± 0.2 2.6 ± 0.6 Principle Component 2 0.027 ± 0.011 0.15 1.4 ± 1.6 0.66 ± 0.63 -1 ± 5.6	$\frac{585 \text{ nm}}{0.13}$ 0.13 0.15 0.01 ± 0.02 0.7 ± 0.5 -0.029 ± 0.026 1.2 ± 0.4 $-0.0013 \pm$ 0.0004 17.0 ± 6 $\frac{588 \text{ nm}}{0.19}$ 0.19 0.15 0.0145 ± 0.0008 0.20 ± 0.02 $-0.0182 \pm$ 0.0008	635 nm 0.09 0.15 0.013 ± 0.008 0.5 ± 0.2 -0.033 ± 0.009 1.1 ± 0.1 -0.0011 ± 0.0002 26 ± 6 6 645 nm 0.10 0.15 0.023 ± 0.001 0.20 ± 0.02 -0.019 ± 0.001	676 nm 0.27 0.15 -0.0069 ± 0.0003 0.2 ± 0.02 0.0078 ± 0.0001 2.7 ± 0.1 0.0004 ± 0.0001 31 ± 18 686 nm 0.09 0.15 -0.0127 ± 0.0009 0.37 ± 0.04 0.0113 ± 0.0010	725 nm 0.15 0.15 -0.012 ± 0.001 0.2 ± 0.03 0.0096 ± 0.0005 1.4 ± 0.1 0.0006 ± 0.0002 25 ± 13 725 nm 0.12 0.12 0.15 -0.02 ± 0.01 0.5 ± 0.1 0.02 ± 0.01
r3DTV ex495 t0 IRF A1 τ1 A2 τ2 A3 τ3 P3DTV ex450 t0 IRF A1 τ1 A2 τ2 A3 τ3	Principle 0.12 ± 0.01 0.15 0.146 ± 0.002 1.64 ± 0.05 0.004 ± 0.002 60 ± 70 Principle Component 1 0.232 ± 0.006 0.15	Principle Component 2 0.098 ± 0.004 0.15 1.0 ± 0.1 0.16 ± 0.02 0.4 ± 0.1 1.0 ± 0.4 -0.3 ± 0.2 2.6 ± 0.6 Principle Component 2 0.027 ± 0.011 0.15 1.4 ± 1.6 0.66 ± 0.63 -1 ± 5.6 1 ± 1.1	$\frac{585 \text{ nm}}{0.13}$ 0.13 0.15 0.01 ± 0.02 0.7 ± 0.5 -0.029 ± 0.026 1.2 ± 0.4 $-0.0013 \pm$ 0.0004 17.0 ± 6 $\frac{588 \text{ nm}}{0.19}$ 0.19 0.15 0.0145 ± 0.0008 0.20 ± 0.02 $-0.0182 \pm$ 0.0008 1.27 ± 0.10	635 nm 0.09 0.15 0.013 ± 0.008 0.5 ± 0.2 -0.033 ± 0.009 1.1 ± 0.1 -0.0011 ± 0.0002 26 ± 6 6 645 nm 0.10 0.15 0.023 ± 0.001 0.20 ± 0.02 -0.019 ± 0.001 0.90 ± 0.07	676 nm 0.27 0.15 -0.0069 ± 0.0003 0.2 ± 0.02 0.0078 ± 0.0001 2.7 ± 0.1 0.0004 ± 0.0001 31 ± 18 686 nm 0.09 0.15 -0.0127 ± 0.0009 0.37 ± 0.04 0.0113 ± 0.0010 1.6 ± 0.2	725 nm 0.15 0.15 -0.012 ± 0.001 0.2 ± 0.03 0.0096 ± 0.0005 1.4 ± 0.1 0.0006 ± 0.0002 25 ± 13 725 nm 0.12 0.15 -0.02 ± 0.01 0.5 ± 0.1 0.02 ± 0.01 1.0 ± 0.3
r3DTV ex495 t0 IRF A1 τ1 A2 τ2 A3 τ3 P3DTV ex450 t0 IRF A1 τ1 A2 τ2 A3 τ3	Principle 0.12 ± 0.01 0.15 0.146 ± 0.002 1.64 ± 0.05 0.004 ± 0.002 60 ± 70 Principle Component 1 0.232 ± 0.006 0.15 -0.124 ± 0.004 1.8 ± 0.1 -0.0036 ± 0.0036	Principle Component 2 0.098 ± 0.004 0.15 1.0 ± 0.1 0.16 ± 0.02 0.4 ± 0.1 1.0 ± 0.4 -0.3 ± 0.2 2.6 ± 0.6 Principle Component 2 0.027 ± 0.011 0.15 1.4 ± 1.6 0.66 ± 0.63 -1 ± 5.6 1 ± 1.1	$\frac{585 \text{ nm}}{0.13}$ 0.13 0.15 0.01 ± 0.02 0.7 ± 0.5 -0.029 ± 0.026 1.2 ± 0.4 $-0.0013 \pm$ 0.0004 17.0 ± 6 $\frac{588 \text{ nm}}{0.19}$ 0.19 0.15 0.0145 ± 0.0008 0.20 ± 0.02 $-0.0182 \pm$ 0.0008 1.27 ± 0.10 $-0.0014 \pm$ 0.0004	635 nm 0.09 0.15 0.013 ± 0.008 0.5 ± 0.2 -0.033 ± 0.009 1.1 ± 0.1 -0.0011 ± 0.0002 26 ± 6 6 645 nm 0.10 0.15 0.023 ± 0.001 0.20 ± 0.02 -0.019 ± 0.001 0.90 ± 0.07 -0.0006 ± 0.0002	676 nm 0.27 0.15 -0.0069 ± 0.0003 0.2 ± 0.02 0.0078 ± 0.0001 2.7 ± 0.1 0.0004 ± 0.0001 31 ± 18 686 nm 0.09 0.15 -0.0127 ± 0.0009 0.37 ± 0.04 0.0113 ± 0.0010 1.6 ± 0.2 0.0003 ± 0.0008	725 nm 0.15 0.15 -0.012 ± 0.001 0.2 ± 0.03 0.0096 ± 0.0005 1.4 ± 0.1 0.0006 ± 0.0002 25 ± 13 725 nm 0.12 0.12 0.15 -0.02 ± 0.01 0.5 ± 0.1 0.02 ± 0.01 1.0 ± 0.3 0.0008 ± 0.0003
r3DTV ex495 t0 IRF A1 T1 A2 T2 A3 T3 P3DTV ex450 t0 IRF A1 T1 A2 T2 A3 T3	Principle 0.12 ± 0.01 0.15 0.146 ± 0.002 1.64 ± 0.05 0.004 ± 0.002 60 ± 70 Principle Component 1 0.232 ± 0.006 0.15 -0.124 ± 0.004 1.8 ± 0.1 -0.0036 ± 0.0036 110 ± 420	Principle Component 2 0.098 ± 0.004 0.15 1.0 ± 0.1 0.16 ± 0.02 0.4 ± 0.1 1.0 ± 0.4 -0.3 ± 0.2 2.6 ± 0.6 Principle Component 2 0.027 ± 0.011 0.15 1.4 ± 1.6 0.66 ± 0.63 -1 ± 5.6 1 ± 1.1	$\frac{585 \text{ nm}}{0.13}$ 0.13 0.15 0.01 ± 0.02 0.7 ± 0.5 -0.029 ± 0.026 1.2 ± 0.4 $-0.0013 \pm$ 0.0004 17.0 ± 6 $\frac{588 \text{ nm}}{0.19}$ 0.19 0.15 0.0145 ± 0.0008 0.20 ± 0.02 $-0.0182 \pm$ 0.0008 1.27 ± 0.10 $-0.0014 \pm$ 0.0004 17 ± 7	635 nm 0.09 0.15 0.013 ± 0.008 0.5 ± 0.2 -0.033 ± 0.009 1.1 ± 0.1 -0.0011 ± 0.0002 26 ± 6 6 645 nm 0.10 0.15 0.023 ± 0.001 0.20 ± 0.02 -0.019 ± 0.001 0.90 ± 0.07 -0.0006 ± 0.0002 50 ± 38	676 nm 0.27 0.15 -0.0069 ± 0.0003 0.2 ± 0.02 0.0078 ± 0.0001 2.7 ± 0.1 0.0004 ± 0.0001 31 ± 18 686 nm 0.09 0.15 -0.0127 ± 0.0009 0.37 ± 0.04 0.0113 ± 0.0010 1.6 ± 0.2 0.0003 ± 0.0008 22 ± 8	725 nm 0.15 0.15 -0.012 ± 0.001 0.2 ± 0.03 0.0096 ± 0.0005 1.4 ± 0.1 0.0006 ± 0.0002 25 ± 13 725 nm 0.12 0.12 0.15 -0.02 ± 0.01 0.5 ± 0.1 0.02 ± 0.01 1.0 ± 0.3 0.0008 ± 0.0003 21 ± 12

Table S1. Kinetic fitting parameters for all pump probe visible experiments.

P3DSV ex650	Principle Component 1	Principle Component 2	619 nm	670 nm	703 nm	735 nm
to	0.047 ± 0.005	0.257 ± 0.008	0.262 ± 0.007	0.24 ± 0.01	0.07 ± 0.01	0.281 ± 0.005
IRF	0.15	0.15	0.15	0.15	0.15	0.15
A_1	1.0 ± 0.2				-0.033 ± 0.004	
$ au_1$	0.7 ± 0.2				0.60 ± 0.07	
A_2	-0.6 ± 0.2	-0.147 ± 0.003	-0.071 ± 0.001	-0.064 ± 0.001	0.025 ± 0.005	0.0389 ± 0.0005
$ au_2$	1.8 ± 0.4		1.21 ± 0.05	1.05 ± 0.06	2.0 ± 2.0	1.58 ± 0.05
A 3	0.014 ± 0.008		-0.002 ± 0.001	-0.002 ± 0.001	-0.0003 ± 0.0003	0.0011 ± 0.0006
τ3	43 ± 36		30 ± 25	37 ± 36	94 ± 220	42 ± 35
P3DSV	Principle	Principle	550 nm	604 nm	703 nm	736 nm
P3DSV ex455nm	Principle Component 1	Principle Component 2	550 nm	604 nm	703 nm	736 nm
P3DSV ex455nm t ₀	Principle Component 1 0.22	Principle Component 2 -0.01	550 nm 0.206 ± 0.003	604 nm 0.235 ± 0.006	703 nm 0.02	736 nm 0.06
P3DSV ex455nm to IRF	Principle Component 1 0.22 0.15	Principle Component 2 -0.01 0.15	550 nm 0.206 ± 0.003 0.15	$604 \text{ nm} \\ 0.235 \pm 0.006 \\ 0.15$	703 nm 0.02 0.15	736 nm 0.06 0.15
P3DSV ex455nm to IRF A1	Principle Component 1 0.22 0.15	Principle Component 2 -0.01 0.15	550 nm 0.206 ± 0.003 0.15 -0.007 ± 0.001	604 nm 0.235 ± 0.006 0.15	703 nm 0.02 0.15 -0.009 ± 0.001	736 nm 0.06 0.15 -0.017 ± 0.001
P3DSV ex455nm t0 IRF A1 τ1	Principle Component 1 0.22 0.15	Principle Component 2 -0.01 0.15	550 nm 0.206 ± 0.003 0.15 -0.007 ± 0.001 1.2 ± 0.2	604 nm 0.235 ± 0.006 0.15	703 nm 0.02 0.15 -0.009 ± 0.001 0.49 ± 0.08	$\begin{array}{c} \textbf{736 nm} \\ 0.06 \\ 0.15 \\ \textbf{-0.017} \pm 0.001 \\ 0.29 \pm 0.04 \end{array}$
P3DSV ex455nm t0 IRF A1 τ1 A2	$\begin{array}{c} \mbox{Principle}\\ \hline \mbox{Component 1}\\ 0.22\\ 0.15\\ \end{array}$	Principle Component 2 -0.01 0.15 -0.51 ± 0.05	550 nm 0.206 ± 0.003 0.15 -0.007 ± 0.001 1.2 ± 0.2 -0.003 ± 0.001	604 nm 0.235 ± 0.006 0.15 -0.0138 ± 0.0004	$\begin{array}{c} \textbf{703 nm} \\ 0.02 \\ 0.15 \\ -0.009 \pm 0.001 \\ 0.49 \pm 0.08 \\ 0.007 \pm 0.001 \end{array}$	$\begin{array}{c} \textbf{736 nm} \\ 0.06 \\ 0.15 \\ \textbf{-0.017} \pm 0.001 \\ 0.29 \pm 0.04 \\ 0.015 \pm 0.001 \end{array}$
P3DSV ex455nm to IRF A1 τ1 A2 τ2	$\begin{tabular}{ c c c c } \hline Principle \\ \hline Component 1 \\ \hline 0.22 \\ 0.15 \\ \hline 0.135 \pm 0.005 \\ \hline 1.6 \pm 0.1 \\ \hline \end{tabular}$	$\frac{\text{Principle}}{\text{Component 2}} \\ -0.01 \\ 0.15 \\ -0.51 \pm 0.05 \\ 0.6 \pm 0.1 \\ \end{array}$	550 nm 0.206 ± 0.003 0.15 -0.007 ± 0.001 1.2 ± 0.2 -0.003 ± 0.001 4.7 ± 2.0	604 nm 0.235 ± 0.006 0.15 $-0.0138 \pm$ 0.0004 1.7 ± 0.1	$\begin{array}{c} \textbf{703 nm} \\ 0.02 \\ 0.15 \\ \textbf{-0.009 \pm 0.001} \\ 0.49 \pm 0.08 \\ 0.007 \pm 0.001 \\ 2.1 \pm 0.4 \end{array}$	$\begin{array}{c} \textbf{736 nm} \\ \hline 0.06 \\ 0.15 \\ \textbf{-0.017 \pm 0.001} \\ 0.29 \pm 0.04 \\ 0.015 \pm 0.001 \\ 1.4 \pm 0.2 \end{array}$
P3DSV ex455nm to IRF A1 τ1 A2 τ2 A3	$\begin{array}{c} \mbox{Principle} \\ \hline \mbox{Component 1} \\ 0.22 \\ 0.15 \\ \hline \\ 0.135 \pm 0.005 \\ 1.6 \pm 0.1 \\ 0.007 \pm 0.005 \\ \end{array}$	$\begin{array}{c} \text{Principle} \\ \text{Component 2} \\ \hline -0.01 \\ 0.15 \\ \hline \\ -0.51 \pm 0.05 \\ \hline \\ 0.6 \pm 0.1 \\ 0.21 \pm 0.05 \end{array}$	550 nm 0.206 ± 0.003 0.15 -0.007 ± 0.001 1.2 ± 0.2 -0.003 ± 0.001 4.7 ± 2.0 -0.0005 ± 0.0003	$\begin{array}{c} \textbf{604 nm} \\ \hline 0.235 \pm 0.006 \\ 0.15 \\ \hline \\ 0.0004 \\ 1.7 \pm 0.1 \\ -0.0002 \pm \\ 0.0004 \\ \hline \end{array}$	$\begin{array}{c} \textbf{703 nm} \\ 0.02 \\ 0.15 \\ \textbf{-0.009 \pm 0.001} \\ 0.49 \pm 0.08 \\ 0.007 \pm 0.001 \\ 2.1 \pm 0.4 \\ 0.0010 \pm 0.0002 \end{array}$	736 nm 0.06 0.15 -0.017 ± 0.001 0.29 ± 0.04 0.015 ± 0.001 1.4 ± 0.2 0.0017 ± 0.0002

Figure S12. Single wavelength fitting kinetics of P3DTV in argon purged chlorobenzene post excitation at 652 nm. The experimental data is presented in black with the corresponding fitting in red. Fit parameters are presented in Table S2.

Figure S13. Single wavelength fitting kinetics of P3DSV in argon purged chlorobenzene post excitation at 650 nm. The experimental data is presented in black with the corresponding fitting in red. Fit parameters are presented in Table S2.

P3DTV ex 652	900	1100	1200
to	0.24	0.30	0.29
IRF	0.15	0.15	0.15
\mathbf{A}_{1}	0.0392 ± 0.0005	0.0302 ± 0.0004	0.0182 ± 0.0002
$ au_1$	$\textbf{0.97} \pm \textbf{0.03}$	$\textbf{0.94} \pm \textbf{0.03}$	$\textbf{0.84} \pm \textbf{0.03}$
A_2	0.0009 ± 0.0004	0.0002 ± 0.0002	0.0006 ± 0.0002
$ au_2$	70 ± 120	700 ± 24000	32 ± 25

Table S2. Kinetic fitting parameters for all pump probe NIR experiments.

PSV	900.53	1101.31	1200.39
to	0.24	0.29	0.28
IRF	0.15	0.15	0.15
A ₁	0.0037 ± 0.0009	$\textbf{0.110} \pm \textbf{0.003}$	$\textbf{0.070} \pm \textbf{0.002}$
τ1	19 ± 15	$\textbf{0.45} \pm \textbf{0.02}$	$\textbf{0.43} \pm \textbf{0.02}$
A ₂	$\textbf{0.123} \pm \textbf{0.002}$	$\textbf{0.0007} \pm \textbf{0.0007}$	0.0009 ± 0.0005
$ au_2$	$\textbf{0.49} \pm \textbf{0.02}$	50 ± 240	22 ± 45