Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2018

Supporting Information

Significantly enhanced energy storage performance in

BiFeO₃/BaTiO₃/BiFeO₃ sandwich-structured films through

crystallinity regulation

Yafei Hou, *a, b Renlu Han, b Weiping Li, a Laihui Luoa and Weidong Fei*b

^a Department of Microelectronic Science and Engineering, Ningbo University, Ningbo 315211, P.

R. China.

^b State Key Lab of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001,

P. R. China.

*corresponding authors: https://www.household.co.kg wdfei@https://www.household.co.kg https://www.household.co.kg https://wwww.household.co.kg <a hre=

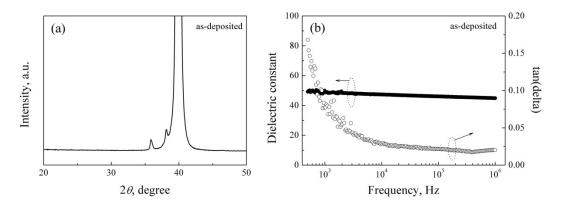


Fig. S1 (a) XRD pattern and (b) dielectric property of the as-deposited $BiFeO_3/BaTiO_3/BiFeO_3$ film

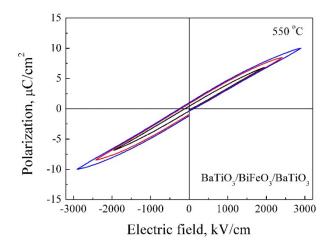


Fig. S2 Polarization behavior of $BaTiO_3/BiFeO_3/BaTiO_3$ film annealed at 550 °C with different electric field