
Reduced densities and cumulants, bond indices and
natural adaptive orbitals

ELECTRONIC SUPPLEMENTARY INFORMATION

Electron counting in position space: from quantum fragments
to Lewis structures to multicenter bonds

by
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1 Calculation of spinless nth−order reduced densities

The spinless nth−order reduced density (nRD) is defined here as

ρn(r1 . . . rn) =

(
N

n

)
n!

∫
Ψ?Ψ dxi>ndσi≤n (1)

where Ψ(1, N) is a N− electron wavefunction, x ≡ rσ is a spin(σ)-spatial(r) coordinate,
and dxi>n and dσi≤n mean integration over xn+1 . . .xN and σ1 . . . σn, respectively. We
will develop an useful expression for ρn in case that Ψ is a multideterminant wavefunction

Ψ(1, N) =
∑
K

CKΨK(1, N), (2)

where each determinant ΨK(1, N) is made of real and orthonormal spin-orbitals φi:

ΨK(1, N) =
1√
N !

det |φr1(1) . . . φrN (N)| (3)

Then, Eq. 1 becomes

ρn(r1 . . . rn) =
∑
K,L

CKCLρ
n
KL(r1 . . . rn), with (4)

ρnKL(r1 . . . rn) =
1

(N − n)!

∫
ΨKΨL dxi>ndσi≤n. (5)

We will summarize now the main steps necessary to write ρn(r1 . . . rn) in the form

ρn(r1 . . . rn) =
n∑

a1a2...anb1b2...bn

cb1b2...bna1a2...an

n∏
k

φak(rk)φbk(rk). (6)

A ri > 0 in Eq. 3 denotes a spin-orbital with a spin function α, and −ri < 0 refers
to the spin-orbital with the same spatial part and spin function β. Every ri satisfies
1 ≤ |ri| ≤M , where M is the total number of molecular orbitals (MO). We will follow the
nomenclature of Löwdin[1] and rename the spin-orbitals (φr1 . . . φrN ) and (φs1 . . . φsN ) (the
latter are the spin-orbitals defining ΨL(1, N)) as (u1 . . . uN) and (v1 . . . vN), respectively.
The overlap between the Slater determinants U = det |u1 . . . uN | and V = det |v1 . . . vN | is
given by [1] 〈U |V 〉 = N !DUV = N !det |duv(kl)|, where duv(kl) = 〈uk|vl〉. For the present
case, with an orthonormal MO basis, duv(kl) is either 1 or 0 depending on whether uk = vl
or uk 6= vl, respectively. If the spin-orbitals (v1 . . . vN) in V are re-ordered such that DUV

is diagonal, the coefficient CL of the Slater determinant remains unchanged or changes
its sign depending if the number of transpositions needed to put these spin-orbitals back
to their original situation (R) is even or odd, respectively. Now, |u1(1) . . . uN(N)〉 is
expanded in terms of its first n rows[1]

|u1(1) . . . uN(N)〉 =
∑
k

det |uk1(1) . . . ukn(n)| × detu(n|k). (7)

In this equation, k runs over all possible ordered sets k1 < k2 < . . . < kn and detu(n|k),
that only depends on the coordinates of electrons n+1 to N , is the determinant obtained
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by elliminating the rows 1 . . . n and the columns k1 . . . kn from U . If Eq. 7 for U and
the analogous one for V are put in Eq. 5, and coordinates xn+1 . . .xN are integrated, we
obtain

ρnKL(r1 . . . rn) =

∫ ∑
k,l

|Uk| |Vl|DUV (k|l) dσi≤n, (8)

where |Uk| = det|uk1(1) . . . ukn(n)|, |Vl| = det|vl1(1) . . . vln(n)|, and DUV (k|l) is the minor
of order (N − n) built by deleting the rows k1 . . . kn and the columns l1 . . . ln from DUV .
Since DUV is already a diagonal determinant with only 1’s and 0’s in the diagonal, each
DUV (k|l) in Eq. 8 can only be 1 or 0. DUV (k|l) will thus vanish for k 6= l regardless
K = L or K 6= L. When K = L, DUV = det |IN | = 1, where IN is the (N × N) unit
matrix, and all the DUV (k|k) are 1. Hence,

ρnKK(r1 . . . rn) =

∫ ∑
k

|Uk| |Vk| =
∑
k

∑
P,Q

(−1)P+Q

n∏
i=1

(∫
upi(xi)vqi(xi)dσi

)
(9)

where P and Q run over the n! permutations of the indices contained in k, and (p1 . . . pn)
and (q1 . . . qn) are the permutation of k associated to P and Q, respectively. The product
over i only survives if upi and vqi are both either α or β spin-orbitals. When this condition
is met, calling ai = |pi| and bi = |qi|, for K = L, the coefficient cb1b2...bna1a2...an

in Eq. 6 has to
be increased by C2

K(−1)P+Q+R.
We consider now the case where ΨK and ΨL differ in d spin-orbitals. When d > n the

determinant DUV (after re-ordering the columns of V such that DUV be diagonal) will
contain more than n 0’s in the diagonal. Consequently, all the minors DUV (k|k) obtained
by deleting n rows and (the same) n columns from DUV will still contain one or more
0’s in the diagonal and will be 0. In other words, the product Ψ?

KΨL will not contribute
to ρn if both determinants differ in more than n spin-orbitals. The particular cases with
n = 1 and n = 2 are very well known.[2] On the other hand, since a determinant remains
unchanged if the same series of rows and columns exchanges are performed, we can always
put DUV into a form such that the d ≤ n spin-orbitals wich are different in U and V
appear in the first d positions. After this has been done, DUV (k|k) will vanish unless
k1 = 1, k2 = 2, . . ., kd = d. As a consequence, ρnKL for K 6= L is also given by Eq. 9 with
the particularity that the first d ki’s are fixed to 1, 2, . . ., albeit P and Q still run over the
n! permutations of the indices 1, 2, . . . , d, kd+1, . . . , kn, and p1 . . . pn and q1 . . . qn are the
permutations of 1, 2, . . . , d, kd+1, . . . , kn associated to P and Q, respectively. The rest of
arguments are analogous to those given after Eq. 9, with the difference that cb1b2...bna1a2...an

has
to be increased by CKCL(−1)P+Q+R instead of C2

K(−1)P+Q+R, as in the K = L case.
Since we are using real spin-orbitals, φak(rk)φbk(rk) = φbk(rk)φak(rk), so that each

pair of indices (ak, bk) can be condensed to a single index ik, defined as ik = max(ak, bk)×
(max(ak, bk)− 1) + min(ak, bk), and ρn written also in the form

ρn(r1, . . . , rn) =

n×(n+1)/2∑
i1,i2,...,in

Ci1i2...in

n∏
k

ϕik(rk), (10)

where the products of pairs of MOs are stored in the order ϕ1 = φ1φ1, ϕ1 = φ2φ1, ϕ3 =
φ2φ2, etc. As a consequence of the electron indistinguishability, all Ci1i2...in ’s differing
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only in the order of i1,i2,. . .,in are equal, so that only the those coefficients with i1 ≥ i2 ≥
. . . ≥ in need be stored. ρn−1 can be obtained from ρn by integrating the over rn:

ρn−1(r1, . . . , rn−1) =
1

N − n+ 1

∫
ρn(r1, . . . , rn)drn, (11)

=
1

N − n+ 1

∑
i1,i2,...,in

Ci1i2...inϕi1(r1)ϕi2(r2) . . . Iin (12)

where Iin =
∫
ϕin(rn)drn = 1 for in = 1, 3, 6, . . . and Iin = 0 otherwise.

2 Cumulant densities from reduced densities

Equation 10 for n = 1,2, and 3 adopts the form (we suppress the upper limit n×(n+1)/2
in all the following summation symbols):

ρ1(r1) = ρ(r1) =
∑
i

Ciϕi(r1) (13)

ρ2(r1, r2) =
∑
i,j

Cijϕi(r1)ϕj(r2) (14)

ρ3(r1, r2, r3) =
∑
i,j,k

Cijkϕi(r1)ϕj(r2)ϕk(r3), (15)

with ij = Cji and Cijk = Cikj = Cjik = Cjki = Ckij = Ckji. The nth−order cumulant
density (nCD), ρnc , is that part of ρn that can not be obtained in terms of ρm’s with
m < n. It can be obtained following the procedure described in the Appendix of Ref. [3].
The explicit formulas for the first 3 cumulants are

ρ1
c(r1) = ρ(r1) (16)

ρ2
c(r1, r2) = ρ(r1)ρ(r2)− ρ2(r1, r2) (17)

ρ3
c(r1, r2, r3) = ρ(r1)ρ(r2)ρ(r3)− 1

2
Ŝρ(r1)ρ2(r2, r3) +

1

2
ρ3(r1, r2, r3) (18)

where Ŝρ(r1)ρ2(r2, r3) = ρ(r1)ρ2(r2, r3) + ρ(r2)ρ2(r1, r3) + ρ(r3)ρ2(r1, r2). The nCDs
for n = 1− 9 are collected in Table 1. Each term ρs1p1ρ

s2
p2
. . . in this table must be actually

understood as (the absence of a subindex in ρsi means that its value is 1):

ρs1p1ρ
s2
p2
. . .→ Ŝ ρs1 . . . ρs1︸ ︷︷ ︸

p1 times

ρs2 . . . ρs2︸ ︷︷ ︸
p2 times

. . . , (19)

where Ŝ is a symmetrizing operator. For instance, ρ1
2ρ

2 that appears for n = 4 must
be replaced by ρ1(r1)ρ1(r2)ρ2(r3, r4) + ρ1(r1)ρ1(r3)ρ2(r2, r4) + ρ1(r1)ρ1(r4)ρ2(r2, r3) +
ρ1(r2)ρ1(r3)ρ2(r1, r4) + ρ1(r2)ρ1(r4)ρ2(r1, r3) + ρ1(r3)ρ1(r4)ρ2(r1, r2).

Using Eqs. 13−15, the cumulants 16−18 can be recast as

ρ1
c(r1) =

∑
i

Diϕi(r1) (20)

ρ2
c(r1, r2) =

∑
i,j

Dijϕi(r1)ϕj(r2) (21)

ρ3
c(r1, r2, r3) =

∑
i,j,k

Dijkϕi(r1)ϕj(r2)ϕk(r3) (22)
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Table 1: Cumulant of orders 1 . . . 9. The number of terms appears in parenthesis.
n = 1 (1 term)

ρ1

1
n = 2 (2 terms)

ρ1
2 ρ2

1 -1
n = 3 (3 terms)

ρ1
3 ρ1ρ2 ρ3

1 -1/2 1/2
n = 4 (5 terms)

ρ1
4 ρ1

2ρ
2 ρ1ρ3 ρ4 ρ2

2

1 -1/3 1/6 -1/6 1/6
n = 5 (7 terms)

ρ1
5 ρ1

3ρ
2 ρ1

2ρ
3 ρ1ρ4 ρ1ρ2

2 ρ2ρ3 ρ5

1 -1/4 1/12 -1/24 1/12 -1/24 1/24
n = 6 (11 terms)

ρ1
6 ρ1

4ρ
2 ρ1

3ρ
3 ρ1

2ρ
4 ρ1

2ρ
2
2 ρ1ρ2ρ3 ρ1ρ5 ρ3

2

1 -1/5 1/20 -1/60 1/20 -1/60 1/120 1/120
ρ6 ρ2ρ4 ρ2

3

-1/120 1/120 -1/60
n = 7 (15 terms)

ρ1
7 ρ1

5ρ
2 ρ1

4ρ
3 ρ1

3ρ
4 ρ1

3ρ
2
2 ρ1

2ρ
2ρ3 ρ1

2ρ
5 ρ1ρ3

2

1 -1/6 1/30 -1/120 1/30 -1/120 1/360 1/360
ρ1ρ6 ρ1ρ2ρ4 ρ1ρ2

3 ρ3ρ4 ρ2
2ρ

3 ρ2ρ5 ρ7

-1/720 1/360 -1/120 -1/720 1/360 -1/720 1/720
n = 8 (22 terms)

ρ1
8 ρ1

6ρ
2 ρ1

5ρ
3 ρ1

4ρ
4 ρ1

4ρ
2
2 ρ1

3ρ
2ρ3 ρ1

3ρ
5 ρ1

2ρ
3
2

1 -1/7 1/42 -1/210 1/42 -1/210 1/840 1/840
ρ1

2ρ
6 ρ1

2ρ
2ρ4 ρ1

2ρ
2
3 ρ1ρ3ρ4 ρ1ρ2

2ρ
3 ρ1ρ2ρ5 ρ1ρ7 ρ2ρ3

2

-1/2520 1/840 -1/210 -1/2520 1/840 -1/2520 1/5040 -1/2520
ρ3ρ5 ρ8 ρ2ρ6 ρ2

2ρ
4 ρ4

2 ρ2
4

1/5040 -1/5040 1/5040 -1/2520 1/5040 1/840
n = 9 (30 terms)

ρ1
9 ρ1

7ρ
2 ρ1

6ρ
3 ρ1

5ρ
4 ρ1

5ρ
2
2 ρ1

4ρ
2ρ3 ρ1

4ρ
5 ρ1

3ρ
3
2

1 -1/8 1/56 -1/336 1/56 -1/336 1/1680 1/1680
ρ1

3ρ
6 ρ1

3ρ
2ρ4 ρ1

3ρ
2
3 ρ1

2ρ
3ρ4 ρ1

2ρ
2
2ρ

3 ρ1
2ρ

2ρ5 ρ1
2ρ

7 ρ1ρ2ρ3
2

-1/6720 1/1680 -1/336 -1/6720 1/1680 -1/6720 1/20160 -1/6720
ρ1ρ3ρ5 ρ1ρ8 ρ1ρ2ρ6 ρ1ρ2

2ρ
4 ρ1ρ4

2 ρ1ρ2
4 ρ3

3 ρ3ρ6

1/20160 -1/40320 1/20160 -1/6720 1/20160 1/1680 1/20160 -1/40320
ρ2ρ3ρ4 ρ2

3ρ
3 ρ4ρ5 ρ2

2ρ
5 ρ2ρ7 ρ9

1/20160 -1/6720 -1/40320 1/20160 -1/40320 1/40320
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with

Di = Ci (23)

Dij = CiCj − Cij (24)

Dijk = CiCjCk + [Cijk − CiCjk − CjCik − CkCij] /2 (25)

The symmetries of the Di1i2...in and Ci1i2...in coefficients are the same. The cumulant ρn−1
c

can be obtained from ρnc by integrating over rn:

ρn−1
c (r1, . . . , rn−1) =

∫
ρnc (r1, r2, . . . , rn)drn. (26)

Integrating all the electrons:∫
ρnc (r1, . . . , rn)dr1 . . . drn = N. (27)

This equation can be inmediately derived by applying n times Eq. 26. In effect, after
applying n− 1 times Eq. 26 we have

ρ1
c(r1) = ρ(r1) =

∫
ρ2
c(r1, r2)dr2, (28)

and integrating one last time ∫
ρ(r1)dr1 = N. (29)

3 Bond indices and natural adaptive orbitals

The extensivity of CDs allows for any ρnc to be obtained from the mCDs with m > n (see
Eq. 26). We can use this property to obtain a one-basin partition of ρ(r) = ρ1

c(r) from
the exchange correlation (xc) cumulant, ρxc(r1, r2) = ρ2

c(r1, r2)

ρ1
c(r) =

m∑
a

∫
Ωa

dr2ρ
2
c(r, r2) =

m∑
a

ρa1(r) ≡
m∑
a

ρa(r), (30)

where ∪mi=aΩa = R3. The ρa(r)’s are exactly equivalent to the charge weighted domain
averaged Fermi Holes (DAFH) [4, 5] that we have explored in the past [6, 7]. Similarly,
ρnc (r) allows for a (n− 1)-basin partition of ρ1

c(r):

ρ1
c(r) =

m∑
ab

ρab(r) =
m∑
ab

∫
Ωa

dr2

∫
Ωb

dr3 ρ
3
c(r, r2, r3), (31)

ρ1
c(r) =

m∑
abc

ρabc(r) =
m∑
abc

∫
Ωa

dr2

∫
Ωb

dr3

∫
Ωc

dr4 ρ
4
c(r, r2, r3, r4), (32)

. . .

ρ1
c(r) =

m∑
ab...n−1

ρab...n−1(r) =
m∑

ab...n−1

∫
Ωa

dr2

∫
Ωb

dr3 . . .

∫
Ωn−1

drn ρ
4
c(r, r2, . . . , rn). (33)
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This partition of ρ1
c(r) into basins, pairs of basins, etc, can be extended to higher CDs:

ρ2
c(r1, r2) =

m∑
a

∫
Ωa

dr3ρ
3
c(r1, r2, r3) (34)

ρ2
c(r1, r2) =

m∑
ab

∫
Ωa

dr3

∫
Ωb

dr4ρ
4
c(r1, r2, r3, r4), (35)

. . .

ρ2
c(r1, r2) =

m∑
ab...n−2

∫
Ωa

dr3

∫
Ωb

dr4 . . .

∫
Ωn−2

drnρ
n
c (r1, r2, . . . , rn). (36)

If instead of integrating all but electron 1 in Eqs. 30-32 to obtain a generalized n-basin
density, all the electrons are integrated, the result is a scalar depending only on the
definition of the Ωi basins:

〈Na〉 =

∫
Ωa

dr1 ρ
1
c(r1), (37)

〈Nab〉 =

∫
Ωa

dr1

∫
Ωb

dr2 ρ
2
c(r1, r2), (38)

〈Nabc〉 =

∫
Ωa

dr1

∫
Ωb

dr2

∫
Ωc

dr3 ρ
3
c(r1, r2, r3), (39)

. . .

〈Nab...n〉 =

∫
Ωa

dr1

∫
Ωb

dr2 . . .

∫
Ωn

drn ρ
n
c (r1, . . . , rn). (40)

Since ρ1
c(r) = ρ(r) and ρxc(r1, r2) = ρ2

c(r1, r2), then 〈Na〉 and 2〈Nab〉 (a 6= b) are the
average electronic population of basin Ωa and the delocalization index (DI) between Ωa

and Ωb, respectively. In general, n!〈Nabcd...〉 can be identified with a n-center bonding or
delocalization index (DI). It is very easy to show by using Eq. 26 that each generalized
density ρ1

abc...(r) is normalized to the n-center DI of the same order, i.e.∫
ρa(r)dr = 〈Na〉 (41)∫
ρab(r)dr = 〈Nab〉 (42)∫
ρabc(r)dr = 〈Nabc〉 (43)

. . .∫
ρab...n(r)dr = 〈Nab...n〉. (44)

Each n-center DI can be recovered from the (n + 1)-center DIs, N =
∑

aNa, 〈Na〉 =∑
b〈Nab〉, 〈Nab〉 =

∑
c〈Nabc〉, . . ., and the total number of electron, N , can be partitioned

into basins, pairs of basins, etc, N =
∑

a〈Na〉 =
∑

ab〈Nab〉 =
∑

abc〈Nabc〉. . ..
The n-center generalized densities ρabc...(r) admit the unified expression

ρabc...(r) = φ(r)Dabc...φ(r)†, (45)

where the row φ = (φ1, φ2, . . . , φM) represents the set of all the MOs of the system and
Dabc... is a symmetric matrix. The diagonalization of Da (corresponding to taking n = 1)
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leads to the DAFH eigenvectors (ψa
i ) and eigenvalues (na

i ), yielding ρa =
∑
na
i (ψ

a
i )2.

This diagonalization has been used many times by Robert Ponec and other authors to
analyze chemical bonding issues in relatively large sets of molecules. The ψa

i ’s are called
domain natural orbitals (DNO) and may be either localized or delocalized, with only
the latter contributing significantly to bonding [6]. Similar diagonalizations of further
order CDs may be even more important. The two-center partition of ρ coming from ρ3

c

(Eq. 31) will give rise, after diagonalizing Dab, to orbitals ψab
i which describe the two-

center bonds between two given basins. Each of these orbitals will contribute additively
to the bond order with the quantity nab

i , the eigenvalue associated to ψab
i . In a similar

way, we can decompose 3-, 4- and, in general, n-center bonds. We call these effective one-
electron functions Natural Adaptive Orbitals (NAdOs) [8]. In all the cases, the n-center
DI is given as the sum of all eigenvalues of these NAdOs, 〈Nabc...〉 =

∑
i n

abc...
i . As the

diagonalization leaves invariant the trace of a matrix we also have 〈Nabc...〉 = tr Dabc.... A
deeper insight on the meaning of the NAdOs is given in Reference [8].
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