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1 Calculation of spinless n'"—order reduced densities

The spinless n'®—order reduced density (nRD) is defined here as

N
prt(ry ... ry) = ( )n!/\lf*\lf dTi~ndo<y, (1)

n

where U(1, N) is a N— electron wavefunction, @ = ro is a spin(o)-spatial(r) coordinate,
and dxz;~, and do;<, mean integration over «,;;...xy and o;...0,, respectively. We
will develop an useful expression for p™ in case that ¥ is a multideterminant wavefunction

V(1,N) =) Cx¥x(1,N), (2)

where each determinant Wg (1, N) is made of real and orthonormal spin-orbitals ¢;:

1

k(L N) = mdet |Gr, (1) -+ Oy (V)] (3)
Then, Eq. 1 becomes
PPy ) =Y CkCrpip(ri...m,),  with (4)
K,L
" 1
pKL(Tl e ’I"n) = m / \IJK\IJL d$i>nd0i§n. (5)

We will summarize now the main steps necessary to write p"(ry...7,) in the form

n

P ) =Y et TT g, (), (7). (6)
k

ai1as...anbi1bs...by

A r; > 0 in Eq. 3 denotes a spin-orbital with a spin function «, and —r; < 0 refers
to the spin-orbital with the same spatial part and spin function 5. Every r; satisfies
1 <|r;| < M, where M is the total number of molecular orbitals (MO). We will follow the
nomenclature of Lowdin[1] and rename the spin-orbitals (¢, ... ¢, ) and (¢s, . . . ¢s, ) (the
latter are the spin-orbitals defining W, (1, N)) as (u; ...uy) and (v; ... vy), respectively.
The overlap between the Slater determinants U = det |ug ... uy| and V = det vy ... vy] is
given by [1] (U|V) = N!Dyy = Nldet |dy,(kl)|, where d,(kl) = (ug|v;). For the present
case, with an orthonormal MO basis, d,,(kl) is either 1 or 0 depending on whether u; = v,
or uy # vy, respectively. If the spin-orbitals (v ...vy) in V are re-ordered such that Dy
is diagonal, the coefficient C}, of the Slater determinant remains unchanged or changes
its sign depending if the number of transpositions needed to put these spin-orbitals back
to their original situation (R) is even or odd, respectively. Now, |ui(1)...un(NN)) is
expanded in terms of its first n rows[1]

lur (1) ... un(N)) = Zdet |ug, (1) ... ug, (n)| x det, (n|k). (7)

In this equation, k runs over all possible ordered sets k1 < ko < ... < k;,, and det,(n|k),
that only depends on the coordinates of electrons n+1 to N, is the determinant obtained
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by elliminating the rows 1...n and the columns k; ...k, from U. If Eq. 7 for U and
the analogous one for V' are put in Eq. 5, and coordinates x,,; ...xy are integrated, we
obtain
sty o) = [ 37 10l Vil Doy (k) dorc, )
k.l
where |Uy| = det|ug, (1) ... ug, (n)|, |Vi| = det|v, (1) ... v, (n)|, and Dyy(k|1) is the minor
of order (N — n) built by deleting the rows k; ...k, and the columns [; ..., from Dyy .
Since Dy is already a diagonal determinant with only 1’s and 0’s in the diagonal, each
Dyy(k|l) in Eq. 8 can only be 1 or 0. Dyy(k|l) will thus vanish for k # 1 regardless
K =Lor K # L. When K = L, Dyy = det|Iy| = 1, where Iy is the (N x N) unit
matrix, and all the Dy (k|k) are 1. Hence,

tra ) = [ SAIAES B3 PWH(/ @y @i ) (O

k PQ

where P and () run over the n! permutations of the indices contained in k, and (p; ... p,)
and (q1 ... q,) are the permutation of k associated to P and @, respectively. The product
over 7 only survives if u,, and v,, are both either v or 3 spin-orbitals. When this condition
is met, calling a; = |p;| and b; = |g;|, for K = L, the coefficient ¢2:?2-% in Eq. 6 has to
be increased by C%(—1)PT@+E,

We consider now the case where Vg and ¥, differ in d spin-orbitals. When d > n the
determinant Dy (after re-ordering the columns of V' such that Dy be diagonal) will
contain more than n 0’s in the diagonal. Consequently, all the minors Dyy (k|k) obtained
by deleting n rows and (the same) n columns from Dy will still contain one or more
0’s in the diagonal and will be 0. In other words, the product W3- W will not contribute
to p" if both determinants differ in more than n spin-orbitals. The particular cases with
n = 1 and n = 2 are very well known.[2] On the other hand, since a determinant remains
unchanged if the same series of rows and columns exchanges are performed, we can always
put Dyy into a form such that the d < n spin-orbitals wich are different in U and V
appear in the first d positions. After this has been done, Dyy (k|k) will vanish unless
ki =1,ky=2,..., kg =d. As a consequence, p}; for K # L is also given by Eq. 9 with
the particularity that the first d k;’s are fixed to 1,2, ..., albeit P and (@) still run over the

n! permutations of the indices 1,2,....d, kqs1,...,kn, and p;...p, and ¢y ...q, are the
permutations of 1,2,....d, kqs1, ..., k, associated to P and @), respectively. The rest of
arguments are analogous to those given after Eq. 9, with the difference that 0211222';;.”;” has

to be increased by CxCp(—1)FT@+E instead of C%(—1)P+9+E a5 in the K = L case.

Since we are using real spin-orbitals, ¢q, (r)ds, (T%) = @b, (Tk)Pa, (T), so that each
pair of indices (ay, bx) can be condensed to a single index iy, defined as i, = max(ay, by) X
(max(a, bx) — 1) + min(ay, b), and p™ written also in the form

nx(n+1)/

pn(rl, e ,I'n) = Z 01112 Jin H 90% I'k (10)

11,82,

where the products of pairs of MOs are stored in the order ¢; = @101, Y1 = G201, Y3 =
P20a, etc. As a consequence of the electron indistinguishability, all Cy;,. ;. ’s differing



only in the order of 7y,is,. . .,i,, are equal, so that only the those coefficients with iy > is >
... > 1, need be stored. p"~! can be obtained from p" by integrating the over r,,:

1

pn_l(rh”'arn—l) = N——n—l—l/pn(rl’”"r”)dr"’ (11)
1

= Nontl Y Cuninpu(t)@i(ra) . I, (12)

11,825+, in

where I;, = [ ¢, (r,)dr, =1 for i, = 1,3,6,... and I;, = 0 otherwise.

2 Cumulant densities from reduced densities

Equation 10 for n = 1,2, and 3 adopts the form (we suppress the upper limit nx (n+1)/2
in all the following summation symbols):

pH(r) = p(r) = Z Cipi(r1) (13)

Py, ra) = Z Cijpi(r1)pi(12) (14)
PA(ri,ra,rs) = > Ciinpi(m1)p;(ra) pi(rs), (15)
1,5,k

with ;; = C; and Cyjp = Cigj = Cjix = Cjpi = Crij = Chji. The nth—order cumulant
density (nCD), pZ, is that part of p" that can not be obtained in terms of p™’s with
m < n. It can be obtained following the procedure described in the Appendix of Ref. [3].
The explicit formulas for the first 3 cumulants are

pe(ri) = p(ri) (16)
pe(riyra) = p(ri)p(rs) — p*(r1,72) (17)

1 1
pi(ri,ra,m3) = p(re)p(ra)p(rs) — §SP(T1)P2(T27 r3) + §P3("°17 T, T3) (18)

where Sp(r1)p%(r,73) = p(r1)p2(re, 73) + p(r2)p(r1,73) + p(13)p2(r1,75). The nCDs
for n =1 —9 are collected in Table 1. Each term p;! p;2 ... in this table must be actually
understood as (the absence of a subindex in p* means that its value is 1):

S1 52 51 552

pplpp2...—>5'psl...p46) P (19)

P1 times P2 times

where S is a symmetrizing operator. For instance, pip? that appears for n = 4 must
be replaced by p'(r1)p' (r2)p?(rs, 74) + p'(r1)p" (r3)p° (12, 74) + p'(11)p' (14) (72, 73) +

pH(r2)pt(rs)p?(ri,ma) + pl(r2)p! (ra) p* (11, 75) + o' (r3)p" (14) p° (11, 72).
Using Eqgs. 13—15, the cumulants 16—18 can be recast as

pe(ri) = ZDz’SOz'(Tl) (20)

pa(ri,ry) = ZDU%(H)%(W) (21)
pa(ry,ma,m5) = ZDijk%(rl)SOj(TQ)SOk(T:‘s) (22)



Table 1: Cumulant of orders 1...9.

The number of terms appears in parenthesis.

n=1 (1 term)

P3 p
1 1
n =3 (3 terms)
ps p'p? p°
1 1/2 1/2
n =4 (5 terms)
Pi pap’ p'p’ p* 12
1 1/3 1/6 1/6 1/6
n =>5 (7 terms)
Ps p3p° P3P’ p'p’ ' p*p° p°
1 “1/4 /12 -1/24 112 -1/24  1/24
n =6 (11 terms)
P6 pip’ P3P’ pap’ psps PP Pl P
1 1/5 1/20  -1/60 /20 -1/60  1/120  1/120
p° p*p P
“1/120 1/120  -1/60
n =7 (15 terms)
p1 5P’ pip’ p3p’ psps Pt pap’ PPy
1 “1/6 1/30  -1/120  1/30  -1/120  1/360  1/360
p'p° p'p*p! ' p*p’ p3p° p*p° P
-1/720 1/360  -1/120  -1/720  1/360  -1/720  1/720
n =8 (22 terms)
Py pep’ PP’ pip’ pirs  potp® pip” paps
1 1/7 1/42  -1/210  1/42  -1/210  1/840  1/840
pap° pap°p’ peps  pe*pt plosp® PP Pl P*py
~1/2520 1/840  -1/210  -1/2520  1/840  -1/2520 1/5040  -1/2520
pPp° I p*p° pip’ 12 pi
1/5040 1/5040  1/5040 -1/2520  1/5040  1/840
n =9 (30 terms)
Po prp? psp’ psp’ psps  piptp® pip” P3P
1 1/8 1/56  -1/336  1/56  -1/336 1/1680  1/1680
p3p° p3p°p’ psps et phosp®  pspte® et p'oPps
“1/6720 1/1680  -1/336  -1/6720 1/1680 -1/6720 1/20160 -1/6720
p'p*p° p'p? A VA O p'pi 3 p°p°
1/20160 “1/40320 1/20160 -1/6720 1/20160 1/1680 1/20160 -1/40320
p*p’p* p3p’ p'p° p3p° pop’ p’
1/20160 “1/6720  -1/40320 1/20160 -1/40320 1/40320




with

D, = C (23)
Dy = CC;—Cy (24)
Dy, = CiC;Cy + [Cijr — CiCj, — C;Cye — CLCy5) /2 (25)

The symmetries of the D;;, ; and Cj;,. s coefficients are the same. The cumulant p"~!
can be obtained from p! by integrating over 7,:

PN, ) :/p?(rl,m,...,rn)drn. (26)

Integrating all the electrons:

/p?(rl,...,rn)drl...drn—N. (27)

This equation can be inmediately derived by applying n times Eq. 26. In effect, after
applying n — 1 times Eq. 26 we have

p(m) = plr) = / PR, a)dis, (25)

and integrating one last time

/p(rl)drl = N. (29)

3 Bond indices and natural adaptive orbitals

The extensivity of CDs allows for any p? to be obtained from the mCDs with m > n (see
Eq. 26). We can use this property to obtain a one-basin partition of p(r) = pl(r) from
the exchange correlation (xc) cumulant, p,.(r;,re) = p2(r1, T2)

) =Y / dra () = 3 i) = 3 ), (30)

where U™ _Q, = R3. The p®(r)’s are exactly equivalent to the charge weighted domain
averaged Fermi Holes (DAFH) [4, 5] that we have explored in the past [6, 7]. Similarly,
p(r) allows for a (n — 1)-basin partition of pl(r):

PNAEGEDY / dry / drs p;(r, s, 13), (31)

ab ab a 2

pi(r) = Zpabc(r) - Z/ dr2/dr3/dr4 p3<r7r27r37r4)7 (32)
a Qb

pe(r)

abc abc ¢
pL(r) = Z Pt (r) = Z /er/drg.../ dr, pi(r, 1o, ... 1,). (33)
ab..n—1 ab..n—1" Qa Qb Qp—1



This partition of pl(r) into basins, pairs of basins, etc, can be extended to higher CDs:

CENSEED O R (34)

b

pi(ri,ry) = Z / drg/dr4.../ dr,pn(r1,Te, ..., Ty). (36)
a Q Qn72

ab..n—2 b

pi(rl,m) = Z/dr3/dr4pé(rlar2,r3,r4)a (35)
ab Qa Q

If instead of integrating all but electron 1 in Eqgs. 30-32 to obtain a generalized n-basin
density, all the electrons are integrated, the result is a scalar depending only on the
definition of the €2; basins:

) = e gl (37)
(Ngp) = /a dr; /Qb dry p?(ry, 1), (38)

(Nape) = /drl/ er/ drs pg(rl,rg,rg), (39)
a Qb c

(Nap.n) = / drl/ d’f’g.../ dr, pa(r, ..., 7). (40)
a Qb Qn

Since pl(r) = p(r) and p,.(ri,r9) = p2(ry,13), then (N,) and 2(Ny) (a # b) are the
average electronic population of basin €, and the delocalization index (DI) between (2,
and €, respectively. In general, n!(Nyeq. ) can be identified with a n-center bonding or
delocalization index (DI). It is very easy to show by using Eq. 26 that each generalized
density pl,. (r) is normalized to the n-center DI of the same order, i.e.

/ S = (V) (41)

/ Pl (r)dr = (N (44)

Each n-center DI can be recovered from the (n + 1)-center DIs, N = > N,, (N,) =
Y 5 (Nav), (Nav) = > (Nabe), - - -, and the total number of electron, N, can be partitioned
into basins, pairs of basins, etc, N =3 (Ny) = >, (Nav) = D upe{Nabe) - - -

The n-center generalized densities p®(r) admit the unified expression

pabc...(r) — ¢(r)D“bC"'¢(r)T7 (45)

where the row ¢ = (¢1, ¢, ..., ¢nr) represents the set of all the MOs of the system and
D¢ is a symmetric matrix. The diagonalization of D® (corresponding to taking n = 1)
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leads to the DAFH eigenvectors (¢)¢) and eigenvalues (n¢), yielding p® = > né(y¢)%.
This diagonalization has been used many times by Robert Ponec and other authors to
analyze chemical bonding issues in relatively large sets of molecules. The 1){’s are called
domain natural orbitals (DNO) and may be either localized or delocalized, with only
the latter contributing significantly to bonding [6]. Similar diagonalizations of further
order CDs may be even more important. The two-center partition of p coming from p?
(Eq. 31) will give rise, after diagonalizing D, to orbitals 1% which describe the two-
center bonds between two given basins. Each of these orbitals will contribute additively
to the bond order with the quantity n, the eigenvalue associated to ¢¢*. In a similar
way, we can decompose 3-, 4- and, in general, n-center bonds. We call these effective one-
electron functions Natural Adaptive Orbitals (NAdOs) [8]. In all the cases, the n-center
DI is given as the sum of all eigenvalues of these NAdOs, (Nyp...) = in?bc'“. As the
diagonalization leaves invariant the trace of a matrix we also have (Ngp. ) = tr Dabe A
deeper insight on the meaning of the NAdOs is given in Reference [§].
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