Reduced densities and cumulants, bond indices and natural adaptive orbitals

ELECTRONIC SUPPLEMENTARY INFORMATION

Electron counting in position space: from quantum fragments to Lewis structures to multicenter bonds

by

Ángel Martín Pendás^{*} and Evelio Francisco^{*}

Departamento de Química Física y Analítica. Facultad de Química. Universidad de Oviedo. 33006-Oviedo. Spain.

> Email: ampendas@uniovi.es Email: evelio@uniovi.es

Contents

- 1. Calculation of spinless n^{th} -order reduced densities
- 2. Cumulant densities from reduced densities
- 3. Bond indices and natural adaptive orbitals
- 4. References

1 Calculation of spinless n^{th} -order reduced densities

The spinless n^{th} -order reduced density (*n*RD) is defined here as

$$\rho^{n}(\boldsymbol{r}_{1}\dots\boldsymbol{r}_{n}) = \binom{N}{n} n! \int \Psi^{\star} \Psi \, d\boldsymbol{x}_{i>n} d\sigma_{i\leq n} \tag{1}$$

where $\Psi(1, N)$ is a N- electron wavefunction, $\boldsymbol{x} \equiv \boldsymbol{r}\sigma$ is a spin(σ)-spatial(\boldsymbol{r}) coordinate, and $d\boldsymbol{x}_{i>n}$ and $d\sigma_{i\leq n}$ mean integration over $\boldsymbol{x}_{n+1} \dots \boldsymbol{x}_N$ and $\sigma_1 \dots \sigma_n$, respectively. We will develop an useful expression for ρ^n in case that Ψ is a multideterminant wavefunction

$$\Psi(1,N) = \sum_{K} C_{K} \Psi_{K}(1,N),$$
(2)

where each determinant $\Psi_K(1, N)$ is made of real and orthonormal spin-orbitals ϕ_i :

$$\Psi_{K}(1,N) = \frac{1}{\sqrt{N!}} \det |\phi_{r_{1}}(1) \dots \phi_{r_{N}}(N)|$$
(3)

Then, Eq. 1 becomes

$$\rho^{n}(\boldsymbol{r}_{1}\dots\boldsymbol{r}_{n}) = \sum_{K,L} C_{K}C_{L}\rho_{KL}^{n}(\boldsymbol{r}_{1}\dots\boldsymbol{r}_{n}), \quad \text{with}$$
(4)

$$\rho_{KL}^{n}(\boldsymbol{r}_{1}\dots\boldsymbol{r}_{n}) = \frac{1}{(N-n)!} \int \Psi_{K}\Psi_{L} \, d\boldsymbol{x}_{i>n} d\sigma_{i\leq n}.$$
(5)

We will summarize now the main steps necessary to write $\rho^n(\mathbf{r}_1 \dots \mathbf{r}_n)$ in the form

$$\rho^n(\boldsymbol{r}_1\dots\boldsymbol{r}_n) = \sum_{a_1a_2\dots a_nb_1b_2\dots b_n}^n c_{a_1a_2\dots a_n}^{b_1b_2\dots b_n} \prod_k^n \phi_{a_k}(\boldsymbol{r}_k)\phi_{b_k}(\boldsymbol{r}_k).$$
(6)

A $r_i > 0$ in Eq. 3 denotes a spin-orbital with a spin function α , and $-r_i < 0$ refers to the spin-orbital with the same spatial part and spin function β . Every r_i satisfies $1 \leq |r_i| \leq M$, where M is the total number of molecular orbitals (MO). We will follow the nomenclature of Löwdin[1] and rename the spin-orbitals $(\phi_{r_1} \dots \phi_{r_N})$ and $(\phi_{s_1} \dots \phi_{s_N})$ (the latter are the spin-orbitals defining $\Psi_L(1, N)$) as $(u_1 \dots u_N)$ and $(v_1 \dots v_N)$, respectively. The overlap between the Slater determinants $U = \det |u_1 \dots u_N|$ and $V = \det |v_1 \dots v_N|$ is given by [1] $\langle U|V \rangle = N!D_{UV} = N!\det |d_{uv}(kl)|$, where $d_{uv}(kl) = \langle u_k|v_l \rangle$. For the present case, with an orthonormal MO basis, $d_{uv}(kl)$ is either 1 or 0 depending on whether $u_k = v_l$ or $u_k \neq v_l$, respectively. If the spin-orbitals $(v_1 \dots v_N)$ in V are re-ordered such that D_{UV} is diagonal, the coefficient C_L of the Slater determinant remains unchanged or changes its sign depending if the number of transpositions needed to put these spin-orbitals back to their original situation (R) is even or odd, respectively. Now, $|u_1(1) \dots u_N(N)\rangle$ is expanded in terms of its first n rows[1]

$$|u_1(1)\dots u_N(N)\rangle = \sum_{\boldsymbol{k}} \det |u_{k_1}(1)\dots u_{k_n}(n)| \times \det_u(n|\boldsymbol{k}).$$
⁽⁷⁾

In this equation, \mathbf{k} runs over all possible ordered sets $k_1 < k_2 < \ldots < k_n$ and $\det_u(n|\mathbf{k})$, that only depends on the coordinates of electrons n+1 to N, is the determinant obtained

by elliminating the rows $1 \dots n$ and the columns $k_1 \dots k_n$ from U. If Eq. 7 for U and the analogous one for V are put in Eq. 5, and coordinates $\boldsymbol{x}_{n+1} \dots \boldsymbol{x}_N$ are integrated, we obtain

$$\rho_{KL}^{n}(\boldsymbol{r}_{1}\dots\boldsymbol{r}_{n}) = \int \sum_{\boldsymbol{k},\boldsymbol{l}} |U_{\boldsymbol{k}}| |V_{\boldsymbol{l}}| D_{UV}(\boldsymbol{k}|\boldsymbol{l}) \, d\sigma_{i\leq n}, \tag{8}$$

where $|U_{\mathbf{k}}| = \det |u_{k_1}(1) \dots u_{k_n}(n)|$, $|V_{\mathbf{l}}| = \det |v_{l_1}(1) \dots v_{l_n}(n)|$, and $D_{UV}(\mathbf{k}|\mathbf{l})$ is the minor of order (N - n) built by deleting the rows $k_1 \dots k_n$ and the columns $l_1 \dots l_n$ from D_{UV} . Since D_{UV} is already a diagonal determinant with only 1's and 0's in the diagonal, each $D_{UV}(\mathbf{k}|\mathbf{l})$ in Eq. 8 can only be 1 or 0. $D_{UV}(\mathbf{k}|\mathbf{l})$ will thus vanish for $\mathbf{k} \neq \mathbf{l}$ regardless K = L or $K \neq L$. When K = L, $D_{UV} = \det |\mathbf{I}_N| = 1$, where \mathbf{I}_N is the $(N \times N)$ unit matrix, and all the $D_{UV}(\mathbf{k}|\mathbf{k})$ are 1. Hence,

$$\rho_{KK}^{n}(\boldsymbol{r}_{1}\dots\boldsymbol{r}_{n}) = \int \sum_{\mathbf{k}} |U_{\mathbf{k}}| |V_{\mathbf{k}}| = \sum_{\mathbf{k}} \sum_{P,Q} (-1)^{P+Q} \prod_{i=1}^{n} \left(\int u_{p_{i}}(\boldsymbol{x}_{i}) v_{q_{i}}(\boldsymbol{x}_{i}) d\sigma_{i} \right)$$
(9)

where P and Q run over the n! permutations of the indices contained in \mathbf{k} , and $(p_1 \dots p_n)$ and $(q_1 \dots q_n)$ are the permutation of \mathbf{k} associated to P and Q, respectively. The product over i only survives if u_{p_i} and v_{q_i} are both either α or β spin-orbitals. When this condition is met, calling $a_i = |p_i|$ and $b_i = |q_i|$, for K = L, the coefficient $c_{a_1 a_2 \dots a_n}^{b_1 b_2 \dots b_n}$ in Eq. 6 has to be increased by $C_K^2(-1)^{P+Q+R}$.

We consider now the case where Ψ_K and Ψ_L differ in d spin-orbitals. When d > n the determinant D_{UV} (after re-ordering the columns of V such that D_{UV} be diagonal) will contain more than n 0's in the diagonal. Consequently, all the minors $D_{UV}(\mathbf{k}|\mathbf{k})$ obtained by deleting n rows and (the same) n columns from D_{UV} will still contain one or more 0's in the diagonal and will be 0. In other words, the product $\Psi_K^{\star}\Psi_L$ will not contribute to ρ^n if both determinants differ in more than n spin-orbitals. The particular cases with n = 1 and n = 2 are very well known. [2] On the other hand, since a determinant remains unchanged if the same series of rows and columns exchanges are performed, we can always put D_{UV} into a form such that the $d \leq n$ spin-orbitals wich are different in U and V appear in the first d positions. After this has been done, $D_{UV}(\mathbf{k}|\mathbf{k})$ will vanish unless $k_1 = 1, k_2 = 2, \ldots, k_d = d$. As a consequence, ρ_{KL}^n for $K \neq L$ is also given by Eq. 9 with the particularity that the first $d k_i$'s are fixed to $1, 2, \ldots$, albeit P and Q still run over the n! permutations of the indices $1, 2, \ldots, d, k_{d+1}, \ldots, k_n$, and $p_1 \ldots p_n$ and $q_1 \ldots q_n$ are the permutations of $1, 2, \ldots, d, k_{d+1}, \ldots, k_n$ associated to P and Q, respectively. The rest of arguments are analogous to those given after Eq. 9, with the difference that $c_{a_1a_2...a_n}^{b_1b_2...b_n}$ has to be increased by $C_K C_L (-1)^{P+Q+R}$ instead of $C_K^2 (-1)^{P+Q+R}$, as in the K = L case.

Since we are using real spin-orbitals, $\phi_{a_k}(\mathbf{r}_k)\phi_{b_k}(\mathbf{r}_k) = \phi_{b_k}(\mathbf{r}_k)\phi_{a_k}(\mathbf{r}_k)$, so that each pair of indices (a_k, b_k) can be condensed to a single index i_k , defined as $i_k = \max(a_k, b_k) \times (\max(a_k, b_k) - 1) + \min(a_k, b_k)$, and ρ^n written also in the form

$$\rho^{n}(\mathbf{r}_{1},\ldots,\mathbf{r}_{n}) = \sum_{i_{1},i_{2},\ldots,i_{n}}^{n \times (n+1)/2} C_{i_{1}i_{2}\ldots i_{n}} \prod_{k}^{n} \varphi_{i_{k}}(\mathbf{r}_{k}), \qquad (10)$$

where the products of pairs of MOs are stored in the order $\varphi_1 = \phi_1 \phi_1$, $\varphi_1 = \phi_2 \phi_1$, $\varphi_3 = \phi_2 \phi_2$, etc. As a consequence of the electron indistinguishability, all $C_{i_1 i_2 \dots i_n}$'s differing

only in the order of i_1, i_2, \ldots, i_n are equal, so that only the those coefficients with $i_1 \ge i_2 \ge \ldots \ge i_n$ need be stored. ρ^{n-1} can be obtained from ρ^n by integrating the over \mathbf{r}_n :

$$\rho^{n-1}(\mathbf{r}_1,\ldots,\mathbf{r}_{n-1}) = \frac{1}{N-n+1} \int \rho^n(\mathbf{r}_1,\ldots,\mathbf{r}_n) d\mathbf{r}_n, \tag{11}$$

$$= \frac{1}{N-n+1} \sum_{i_1,i_2,\dots,i_n} C_{i_1i_2\dots i_n} \varphi_{i_1}(\mathbf{r}_1) \varphi_{i_2}(\mathbf{r}_2) \dots I_{i_n}$$
(12)

where $I_{i_n} = \int \varphi_{i_n}(\mathbf{r}_n) d\mathbf{r}_n = 1$ for $i_n = 1, 3, 6, \dots$ and $I_{i_n} = 0$ otherwise.

2 Cumulant densities from reduced densities

Equation 10 for n = 1, 2, and 3 adopts the form (we suppress the upper limit $n \times (n+1)/2$ in all the following summation symbols):

$$\rho^{1}(\boldsymbol{r}_{1}) = \rho(\boldsymbol{r}_{1}) = \sum_{i} C_{i} \varphi_{i}(\boldsymbol{r}_{1})$$
(13)

$$\rho^2(\boldsymbol{r}_1, \boldsymbol{r}_2) = \sum_{i,j} C_{ij} \varphi_i(\boldsymbol{r}_1) \varphi_j(\boldsymbol{r}_2)$$
(14)

$$\rho^{3}(\boldsymbol{r}_{1},\boldsymbol{r}_{2},\boldsymbol{r}_{3}) = \sum_{i,j,k} C_{ijk}\varphi_{i}(\boldsymbol{r}_{1})\varphi_{j}(\boldsymbol{r}_{2})\varphi_{k}(\boldsymbol{r}_{3}), \qquad (15)$$

with $_{ij} = C_{ji}$ and $C_{ijk} = C_{ikj} = C_{jik} = C_{jki} = C_{kij} = C_{kji}$. The n^{th} -order cumulant density (nCD), ρ_c^n , is that part of ρ^n that can not be obtained in terms of ρ^m 's with m < n. It can be obtained following the procedure described in the Appendix of Ref. [3]. The explicit formulas for the first 3 cumulants are

$$\rho_c^1(\boldsymbol{r}_1) = \rho(\boldsymbol{r}_1) \tag{16}$$

$$\rho_c^2(\mathbf{r}_1, \mathbf{r}_2) = \rho(\mathbf{r}_1)\rho(\mathbf{r}_2) - \rho^2(\mathbf{r}_1, \mathbf{r}_2)$$
(17)

$$\rho_c^3(\mathbf{r}_1, \mathbf{r}_2, \mathbf{r}_3) = \rho(\mathbf{r}_1)\rho(\mathbf{r}_2)\rho(\mathbf{r}_3) - \frac{1}{2}\hat{S}\rho(\mathbf{r}_1)\rho^2(\mathbf{r}_2, \mathbf{r}_3) + \frac{1}{2}\rho^3(\mathbf{r}_1, \mathbf{r}_2, \mathbf{r}_3)$$
(18)

where $\hat{S}\rho(\mathbf{r}_1)\rho^2(\mathbf{r}_2,\mathbf{r}_3) = \rho(\mathbf{r}_1)\rho^2(\mathbf{r}_2,\mathbf{r}_3) + \rho(\mathbf{r}_2)\rho^2(\mathbf{r}_1,\mathbf{r}_3) + \rho(\mathbf{r}_3)\rho^2(\mathbf{r}_1,\mathbf{r}_2)$. The nCDs for n = 1 - 9 are collected in Table 1. Each term $\rho_{p_1}^{s_1}\rho_{p_2}^{s_2}\dots$ in this table must be actually understood as (the absence of a subindex in ρ^{s_i} means that its value is 1):

$$\rho_{p_1}^{s_1}\rho_{p_2}^{s_2}\dots \to \hat{S}\underbrace{\rho_{p_1 \text{ times}}^{s_1}\dots\rho_{p_2 \text{ times}}^{s_1}}_{p_2 \text{ times}}\underbrace{\rho_{p_2 \text{ times}}^{s_2}\dots,$$
(19)

where \hat{S} is a symmetrizing operator. For instance, $\rho_2^1 \rho^2$ that appears for n = 4 must be replaced by $\rho^1(\mathbf{r}_1)\rho^1(\mathbf{r}_2)\rho^2(\mathbf{r}_3,\mathbf{r}_4) + \rho^1(\mathbf{r}_1)\rho^1(\mathbf{r}_3)\rho^2(\mathbf{r}_2,\mathbf{r}_4) + \rho^1(\mathbf{r}_1)\rho^1(\mathbf{r}_4)\rho^2(\mathbf{r}_2,\mathbf{r}_3) + \rho^1(\mathbf{r}_2)\rho^1(\mathbf{r}_3)\rho^2(\mathbf{r}_1,\mathbf{r}_4) + \rho^1(\mathbf{r}_2)\rho^1(\mathbf{r}_4)\rho^2(\mathbf{r}_1,\mathbf{r}_3) + \rho^1(\mathbf{r}_3)\rho^1(\mathbf{r}_4)\rho^2(\mathbf{r}_1,\mathbf{r}_2).$

Using Eqs. 13-15, the cumulants 16-18 can be recast as

$$\rho_c^1(\boldsymbol{r}_1) = \sum_i D_i \varphi_i(\boldsymbol{r}_1)$$
(20)

$$\rho_c^2(\boldsymbol{r}_1, \boldsymbol{r}_2) = \sum_{i,j} D_{ij} \varphi_i(\boldsymbol{r}_1) \varphi_j(\boldsymbol{r}_2)$$
(21)

$$\rho_c^3(\boldsymbol{r}_1, \boldsymbol{r}_2, \boldsymbol{r}_3) = \sum_{i,j,k} D_{ijk} \varphi_i(\boldsymbol{r}_1) \varphi_j(\boldsymbol{r}_2) \varphi_k(\boldsymbol{r}_3)$$
(22)

n = 1 (1 term)							
$ ho^1$							
$n = 2 \ (2 \text{ terms})$	0						
$ ho_2^1$	ρ^2						
	-1						
n = 3 (3 terms)	19	3					
$ ho_3^1$	$\rho^1 \rho^2$	ρ^{3}					
	-1/2	1/2					
n = 4 (5 terms)	-1 -2	-1 -3	_4	-2			
ρ_4^*	$\rho_2^* \rho^2$	$\rho^{1}\rho^{0}$	ρ^{1}	ρ_2^-			
$\frac{1}{1}$	-1/3	1/0	-1/0	1/0			
n = 5 (7 terms)	o ¹ o ²	1 3	o ¹ o ⁴	o ¹ o ²	2 3	_5	
$ ho_5$ 1	$\frac{\rho_{3}\rho}{1/A}$	$\frac{\mu_{2}}{1/12}$	$\frac{\rho}{1/24}$	$\frac{\rho}{1/12}$	$\frac{\rho}{1/24}$	$\frac{\rho}{1/24}$	
$\frac{1}{n-6 (11 \text{ torms})}$	-1/4	1/12	-1/24	1/12	-1/24	1/24	
n = 0 (11 terms)	$a^1 a^2$	$a^{1}a^{3}$	$a^1 a^4$	$a^{1}a^{2}$	$a^1 a^2 a^3$	$a^1 a^5$	ρ^3
$\frac{\rho_6}{1}$	$^{P_4P}_{-1/5}$	$\frac{p_{3}p}{1/20}$	$\frac{\rho_2 \rho}{-1/60}$	$\frac{p_2 p_2}{1/20}$	-1/60	$\frac{p}{1/120}$	$\frac{p_2}{1/120}$
o^6	$a^2 a^4$	ρ_{a}^{2}	1/00	1/20	1/00	1/120	1/120
-1/120	1/120	-1/60					
n = 7 (15 terms)	1	1					
ρ_7^1	$ ho_5^1 ho^2$	$ ho_4^1 ho^3$	$ ho_3^1 ho^4$	$ ho_{3}^{1} ho_{2}^{2}$	$ ho_2^1 ho^2 ho^3$	$ ho_2^1 ho^5$	$ ho^1 ho_2^3$
1	-1/6	1/30	-1/120	1/30	-1/120	1/360	1/360
$ ho^1 ho^6$	$ ho^1 ho^2 ho^4$	$ ho^1 ho_3^2$	$ ho^3 ho^4$	$ ho_2^2 ho^3$	$ ho^2 ho^5$	$ ho^7$	
-1/720	1/360	-1/120	-1/720	1/360	-1/720	1/720	
n = 8 (22 terms)							
$ ho_8^1$	$ ho_6^1 ho^2$	$ ho_5^1 ho^3$	$ ho_4^1 ho^4$	$ ho_4^1 ho_2^2$	$ ho_3^1 ho^2 ho^3$	$ ho_3^1 ho^5$	$ ho_2^1 ho_2^3$
1	-1/7	1/42	-1/210	1/42	-1/210	1/840	1/840
$ ho_2^1 ho^6$	$ ho_2^1 ho^2 ho^4$	$ ho_2^1 ho_3^2$	$\rho^1 \rho^3 \rho^4$	$ ho^1 ho_2^2 ho^3$	$ ho^1 ho^2 ho^5$	$ ho^1 ho^7$	$ ho^2 ho_2^3$
-1/2520	1/840	-1/210	-1/2520	1/840	-1/2520	1/5040	-1/2520
$\rho^{3}\rho^{5}$	ρ°	$\rho^2 \rho^0$	$\rho_2^2 \rho^4$	ρ_2^4	ρ_4^2		
1/5040	-1/5040	1/5040	-1/2520	1/5040	1/840		
n = 9 (30 terms)	1 2	13	14	12	1 2 3	15	13
$ ho_9^1$	$\rho_7^1 \rho_7^2$	$\rho_6^1 \rho_6^0$	$\rho_5^{\star}\rho^{\star}$	$\rho_5^1 \rho_2^2$	$\rho_4^1 \rho_2^2 \rho_3^0$	$\rho_4^1 \rho^0$	$\rho_3^1 \rho_2^9$
1 -1 -6	-1/8	$\frac{1}{50}$	-1/330	$\frac{1}{50}$	-1/330	1/1080	1/1080
$\rho_{\bar{3}}\rho^*$	$\rho_{3}^{-}\rho^{-}\rho^{-}$	$\rho_{3}\rho_{3}$	$\rho_2^- \rho^- \rho^-$ 1/6720	$\rho_{2}^{-}\rho_{2}^{-}\rho^{*}$	$\rho_2 \rho^- \rho^*$ 1/6720	$\rho_{2}\rho_{1}$	$\rho^{-}\rho^{-}\rho_{2}^{*}$ 1/6720
-1/0/20	1/1080	-1/330	-1/0/20	1/1080	-1/0/20	1/20100	-1/0/20
$\mu \ \mu \ \mu^{2}$	$p p^{2}$ 1 / 10200	μμμ 1/20160	$\mu \ \mu_2 \mu_1 \ \mu_2 \mu_2$	$\rho \ \rho_2$	$\rho \rho_4$	μ_3	$p p^{2}$ 1 / 10200
$a^2 a^3 a^4$	-1/40020	$a^4 a^5$	-1/0720	$n^2 n^7$	1/1000	1/20100	-1/40320
μμμ 1/20160	$\mu_{3}\mu_{-1/6720}$	μμ _1 //0320	$\frac{\mu_{2}\mu}{1/20160}$	μμ _1 / / 0390	μ 1 / / Δ320		
1/20100	-1/0120	-1/40320	1/20100	-1/40320	1/40320		

Table 1: Cumulant of orders 1...9. The number of terms appears in parenthesis.

with

$$D_i = C_i \tag{23}$$

$$D_{ij} = C_i C_j - C_{ij} \tag{24}$$

$$D_{ijk} = C_i C_j C_k + [C_{ijk} - C_i C_{jk} - C_j C_{ik} - C_k C_{ij}]/2$$
(25)

The symmetries of the $D_{i_1i_2...i_n}$ and $C_{i_1i_2...i_n}$ coefficients are the same. The cumulant ρ_c^{n-1} can be obtained from ρ_c^n by integrating over \mathbf{r}_n :

$$\rho_c^{n-1}(\boldsymbol{r}_1,\ldots,\boldsymbol{r}_{n-1}) = \int \rho_c^n(\boldsymbol{r}_1,\boldsymbol{r}_2,\ldots,\boldsymbol{r}_n) d\boldsymbol{r}_n.$$
(26)

Integrating all the electrons:

$$\int \rho_c^n(\boldsymbol{r}_1,\ldots,\boldsymbol{r}_n) d\boldsymbol{r}_1\ldots d\boldsymbol{r}_n = N.$$
(27)

This equation can be inmediately derived by applying n times Eq. 26. In effect, after applying n-1 times Eq. 26 we have

$$\rho_c^1(\boldsymbol{r}_1) = \rho(\boldsymbol{r}_1) = \int \rho_c^2(\boldsymbol{r}_1, \boldsymbol{r}_2) d\boldsymbol{r}_2, \qquad (28)$$

and integrating one last time

$$\int \rho(\boldsymbol{r}_1) d\boldsymbol{r}_1 = N. \tag{29}$$

3 Bond indices and natural adaptive orbitals

The extensivity of CDs allows for any ρ_c^n to be obtained from the *m*CDs with m > n (see Eq. 26). We can use this property to obtain a one-basin partition of $\rho(\mathbf{r}) = \rho_c^1(\mathbf{r})$ from the exchange correlation (xc) cumulant, $\rho_{xc}(\mathbf{r}_1, \mathbf{r}_2) = \rho_c^2(\mathbf{r}_1, \mathbf{r}_2)$

$$\rho_c^1(\mathbf{r}) = \sum_a^m \int_{\Omega_a} d\mathbf{r}_2 \rho_c^2(\mathbf{r}, \mathbf{r}_2) = \sum_a^m \rho_1^a(\mathbf{r}) \equiv \sum_a^m \rho^a(\mathbf{r}), \tag{30}$$

where $\bigcup_{i=a}^{m} \Omega_a = \mathcal{R}^3$. The $\rho^a(\mathbf{r})$'s are exactly equivalent to the charge weighted domain averaged Fermi Holes (DAFH) [4, 5] that we have explored in the past [6, 7]. Similarly, $\rho_c^n(\mathbf{r})$ allows for a (n-1)-basin partition of $\rho_c^1(\mathbf{r})$:

$$\rho_c^1(\mathbf{r}) = \sum_{\substack{ab \\ m}}^m \rho^{ab}(\mathbf{r}) = \sum_{\substack{ab \\ m}}^m \int_{\Omega_a} d\mathbf{r}_2 \int_{\Omega_b} d\mathbf{r}_3 \, \rho_c^3(\mathbf{r}, \mathbf{r}_2, \mathbf{r}_3), \tag{31}$$

$$\rho_c^1(\mathbf{r}) = \sum_{abc}^m \rho^{abc}(\mathbf{r}) = \sum_{abc}^m \int_{\Omega_a} d\mathbf{r}_2 \int_{\Omega_b} d\mathbf{r}_3 \int_{\Omega_c} d\mathbf{r}_4 \, \rho_c^4(\mathbf{r}, \mathbf{r}_2, \mathbf{r}_3, \mathbf{r}_4), \tag{32}$$

$$\rho_c^1(\mathbf{r}) = \sum_{ab\dots n-1}^m \rho^{ab\dots n-1}(\mathbf{r}) = \sum_{ab\dots n-1}^m \int_{\Omega_a} d\mathbf{r}_2 \int_{\Omega_b} d\mathbf{r}_3 \dots \int_{\Omega_{n-1}} d\mathbf{r}_n \, \rho_c^4(\mathbf{r}, \mathbf{r}_2, \dots, \mathbf{r}_n). \tag{33}$$

This partition of $\rho_c^1(\mathbf{r})$ into basins, pairs of basins, etc, can be extended to higher CDs:

$$\rho_c^2(\mathbf{r}_1, \mathbf{r}_2) = \sum_a^m \int_{\Omega_a} d\mathbf{r}_3 \rho_c^3(\mathbf{r}_1, \mathbf{r}_2, \mathbf{r}_3)$$
(34)

$$\rho_c^2(\mathbf{r}_1, \mathbf{r}_2) = \sum_{ab}^m \int_{\Omega_a} d\mathbf{r}_3 \int_{\Omega_b} d\mathbf{r}_4 \rho_c^4(\mathbf{r}_1, \mathbf{r}_2, \mathbf{r}_3, \mathbf{r}_4), \qquad (35)$$

$$\rho_c^2(\mathbf{r}_1, \mathbf{r}_2) = \sum_{ab\dots n-2}^m \int_{\Omega_a} d\mathbf{r}_3 \int_{\Omega_b} d\mathbf{r}_4 \dots \int_{\Omega_{n-2}} d\mathbf{r}_n \rho_c^n(\mathbf{r}_1, \mathbf{r}_2, \dots, \mathbf{r}_n).$$
(36)

If instead of integrating all but electron 1 in Eqs. 30-32 to obtain a generalized *n*-basin density, all the electrons are integrated, the result is a scalar depending only on the definition of the Ω_i basins:

$$\langle N_a \rangle = \int_{\Omega_a} d\mathbf{r}_1 \ \rho_c^1(\mathbf{r}_1),$$
 (37)

$$\langle N_{ab} \rangle = \int_{\Omega_a} d\mathbf{r}_1 \int_{\Omega_b} d\mathbf{r}_2 \ \rho_c^2(\mathbf{r}_1, \mathbf{r}_2), \qquad (38)$$

$$\langle N_{abc} \rangle = \int_{\Omega_a} d\mathbf{r}_1 \int_{\Omega_b} d\mathbf{r}_2 \int_{\Omega_c} d\mathbf{r}_3 \ \rho_c^3(\mathbf{r}_1, \mathbf{r}_2, \mathbf{r}_3), \qquad (39)$$

$$\langle N_{ab\dots n} \rangle = \int_{\Omega_a} d\mathbf{r}_1 \int_{\Omega_b} d\mathbf{r}_2 \dots \int_{\Omega_n} d\mathbf{r}_n \ \rho_c^n(\mathbf{r}_1, \dots, \mathbf{r}_n).$$
 (40)

Since $\rho_c^1(\mathbf{r}) = \rho(\mathbf{r})$ and $\rho_{xc}(\mathbf{r}_1, \mathbf{r}_2) = \rho_c^2(\mathbf{r}_1, \mathbf{r}_2)$, then $\langle N_a \rangle$ and $2 \langle N_{ab} \rangle$ $(a \neq b)$ are the average electronic population of basin Ω_a and the delocalization index (DI) between Ω_a and Ω_b , respectively. In general, $n! \langle N_{abcd...} \rangle$ can be identified with a *n*-center bonding or delocalization index (DI). It is very easy to show by using Eq. 26 that each generalized density $\rho_{abc...}^1(\mathbf{r})$ is normalized to the *n*-center DI of the same order, i.e.

$$\int \rho^a(\mathbf{r}) d\mathbf{r} = \langle N_a \rangle \tag{41}$$

$$\int \rho^{ab}(\mathbf{r}) d\mathbf{r} = \langle N_{ab} \rangle \tag{42}$$

$$\int \rho^{abc}(\mathbf{r}) d\mathbf{r} = \langle N_{abc} \rangle \tag{43}$$

$$\int \rho^{ab\dots n}(\mathbf{r}) d\mathbf{r} = \langle N_{ab\dots n} \rangle.$$
(44)

Each *n*-center DI can be recovered from the (n + 1)-center DIs, $N = \sum_{a} N_{a}$, $\langle N_{a} \rangle =$ $\sum_{b} \langle N_{ab} \rangle$, $\langle N_{ab} \rangle = \sum_{c} \langle N_{abc} \rangle$, ..., and the total number of electron, N, can be partitioned into basins, pairs of basins, etc, $N = \sum_{a} \langle N_{a} \rangle = \sum_{ab} \langle N_{ab} \rangle = \sum_{abc} \langle N_{abc} \rangle \dots$ The *n*-center generalized densities $\rho^{abc\dots}(\mathbf{r})$ admit the unified expression

$$\rho^{abc...}(\mathbf{r}) = \boldsymbol{\phi}(\mathbf{r})\mathbf{D}^{abc...}\boldsymbol{\phi}(\mathbf{r})^{\dagger}, \qquad (45)$$

where the row $\boldsymbol{\phi} = (\phi_1, \phi_2, \dots, \phi_M)$ represents the set of all the MOs of the system and $\mathbf{D}^{abc...}$ is a symmetric matrix. The diagonalization of \mathbf{D}^{a} (corresponding to taking n = 1)

leads to the DAFH eigenvectors (ψ_i^a) and eigenvalues (n_i^a) , yielding $\rho^a = \sum n_i^a (\psi_i^a)^2$. This diagonalization has been used many times by Robert Ponec and other authors to analyze chemical bonding issues in relatively large sets of molecules. The ψ_i^a 's are called *domain natural orbitals* (DNO) and may be either localized or delocalized, with only the latter contributing significantly to bonding [6]. Similar diagonalizations of further order CDs may be even more important. The two-center partition of ρ coming from ρ_c^3 (Eq. 31) will give rise, after diagonalizing \mathbf{D}^{ab} , to orbitals ψ_i^{ab} which describe the twocenter bonds between two given basins. Each of these orbitals will contribute additively to the bond order with the quantity n_i^{ab} , the eigenvalue associated to ψ_i^{ab} . In a similar way, we can decompose 3-, 4- and, in general, *n*-center bonds. We call these effective oneelectron functions *Natural Adaptive Orbitals* (NAdOs) [8]. In all the cases, the *n*-center DI is given as the sum of all eigenvalues of these NAdOs, $\langle N_{abc...} \rangle = \sum_i n_i^{abc...}$. As the diagonalization leaves invariant the trace of a matrix we also have $\langle N_{abc...} \rangle = \text{tr } \mathbf{D}^{abc...}$.

References

- [1] Löwdin, P.-O. Phys. Rev. 1955, 97, 1474.
- [2] McWeeny, R. Methods of Molecular Quantum Mechanics; Academic Press: London, 1992.
- [3] Francisco, E.; Martín Pendás, A.; García-Revilla, M.; Álvarez Boto, R. Comput. Theor. Chem. 2013, 1003, 71–78.
- [4] Ponec, R. J. Math. Chem. 1997, 21, 323–333.
- [5] Ponec, R. J. Math. Chem. 1998, 23, 85–103.
- [6] Francisco, E.; Martín Pendás, A.; Blanco, M. A. J. Chem. Phys. 2009, 131, 124125.
- [7] Tiana, D.; Francisco, E.; Blanco, M. A.; Macchi, P.; Sironi, A.; Martín Pendás, A. J. Chem. Theory Comput. 2010, 6, 1064-1074.
- [8] Menéndez, M.; Ávarez Boto, R.; Francisco, E.; Martín-Pendás, A. J. Comput. Chem. 2015, 36, 833–843.