Pressure-Dependent Kinetics of Methyl Formate Reaction with OH at Combustion, Atmospheric and Interstellar Temperatures

Junjun Wu^a, Hongbo Ning^{a,b}, Liuhao Ma^a, and Wei Ren^{a,b,*}

^a Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, New Territories, Hong Kong

^b Shenzhen Research Institute, The Chinese University of Hong Kong, New Territories, Hong Kong

* Corresponding author. Fax: +852 2603 6002. Email: renwei@mae.cuhk.edu.hk (W. Ren)

I. Optimized Geometries at M06-2x/ma-TZVP

1. Reactant: MF

	Χ	Y	Z
С	6 0.8252738	3 0.4315249	1 -0.00003200
0	8 1.2829247	4 -0.6719218	6 0.00001900
0	8 -0.4725669	0 0.7276518	0.00007300
С	6 -1.3537207	2 -0.3978989	02 -0.00004400
H	1 -1.1867447	-1.0053707	0.88834982
H	1 -1.1825477	76 -1.0085557	-0.88541182
H	1 -2.3589615	52 0.0111550	00 -0.00308400
H	1 1.4160707	1.3551817	2 -0.00013300
Co	onformer #2		
	X	Y	Z
6	-0.68238686	0.31144894	-0.00616400
8	-1.80205663	-0.08490198	0.00843700
8	0.37682192	-0.50606190	-0.01017300

6 1.65613366 0.11724598 0.00724400
1 1.83544062 0.60449188 0.96668580
1 1.74951964 0.84440183 -0.80096684
1 2.38457251 -0.67459486 -0.13698897
1 -0.41013192 1.38124572 -0.02132900

2. Transition States-TS1

Conformer #1

	X	Y	Z
6	0.16162197	0.22472995	-0.00909400
8	-0.04360199	1.39676371	-0.00114500
8	-0.73255885	-0.74552885	-0.00674600
6	-2.10155157	-0.31416794	0.00782400
1	1.23407175	-0.24805595	-0.01941300
1	-2.31096353	0.28564794	-0.87623482
1	-2.29458953	0.27677094	0.90157282
1	-2.69499545	-1.22227675	0.00874700
8	2.62320046	-0.52090889	0.00221100
1	2.92973840	0.40193692	0.03838899

	X	Y	Z
6	0.14400797	0.49403990	-0.00033400
8	-0.38311592	1.55743168	0.00022600
8	-0.44866491	-0.69211686	-0.00037700
6	-1.88370362	-0.65937787	0.00018300
1	1.30518173	0.32847193	-0.00065500
1	-2.24303054	-0.14358397	-0.88867082
1	-2.24233654	-0.14338297	0.88919882
1	-2.20254455	-1.69644665	0.00040900
8	2.53545248	-0.37396492	-0.00000200

1 2.19152955 -1.28382674 0.00185800 Conformer #3

	X	Y	Z
6	0.33315800	-0.68711118	0.04949004
8	0.67967375	-1.81879731	0.00234605
8	1.14032992	0.35849076	-0.06638794
6	0.53076339	1.65236813	0.01663805
1	-0.76512145	-0.36952910	0.19753801
1	0.06019463	1.78908360	0.98961685
1	-0.21089333	1.77574188	-0.77058479
1	1.33802497	2.36640915	-0.10947593
8	-2.19904563	0.13204629	0.00789205
1	-2.57339745	-0.72716515	-0.25466390
_			

Conformer #4

	X	Y	Z		
6	0.33789652	-0.68512197	0.04928777		
8	0.69246452	-1.81432403	0.00238478		
8	1.13775521	0.36611716	-0.06629721		
6	0.51912340	1.65566941	0.01666678		
1	-0.76259101	-0.37529313	0.19693074		
1	-0.22276236	1.77429499	-0.77106706		
1	1.32152782	2.37529660	-0.10860520		
1	0.04688760	1.78884576	0.98933858		
8	-2.19971131	0.11787195	0.00782978		
1	-2.56924894	-0.74374957	-0.25366317		
C	Conformer #5				

XYZ6-0.32481521-0.690448590.050080098-0.65699971-1.826394200.002318108-1.144746520.34505960-0.066954896-0.551021981.646287040.01671309

1	0.76924374	-0.35914022	0.19957406
1	0.18883893	1.77904264	-0.77065775
1	-0.08178401	1.78810677	0.98960989
1	-1.36697046	2.35052931	-0.10864488
8	2.19748570	0.15688296	0.00797610
1	2.57977919	-0.69795606	-0.25735485

	X	Y	Z
6	0.31611894	0.69386186	0.05025999
8	0.63346387	1.83402962	0.00225000
8	1.14928977	-0.33103393	-0.06688499
6	0.57214688	-1.63974867	0.01658100
1	-0.77355884	0.34852793	0.20016496
1	1.39701571	-2.33353652	-0.10879398
1	-0.16588697	-1.78164963	-0.77093384
1	0.10461998	-1.78762764	0.98939480
8	-2.19588555	-0.18275396	0.00813600
1	-2.58673247	0.66767287	-0.25888495

	X	Y	Z
6	-0.01435500	0.73632185	0.05596499
8	0.16164197	1.90712961	0.01648600
8	-1.18873675	0.14140697	-0.10137698
6	-1.23228775	-1.28326074	0.03244399
1	0.84131583	-0.01996500	0.22362195
1	-2.09032457	-1.61464467	-0.54431789
1	-1.36581272	-1.54772668	1.08070078
1	-0.32067993	-1.73575564	-0.35537893
8	2.00003959	-0.98449880	0.00612500
1	2.63180246	-0.31257294	-0.30494894

	Χ	Y	Z
6	-0.14179797	0.73697485	0.05812299
8	-0.17316596	1.92014760	0.01003900
8	-1.19372776	-0.05587899	-0.09242698
6	-0.96298680	-1.46467170	0.02730599
1	0.83076883	0.14118997	0.23300895
1	-0.14011797	-1.77424564	-0.61485987
1	-1.88639561	-1.94219060	-0.28421194
1	-0.74160185	-1.72234665	1.06257978
8	2.10662057	-0.66651386	0.00631700
1	2.64824346	0.08173398	-0.30051594

2. Transition States-TS2

	Χ	Y	Z
6	1.24768574	-0.37487992	-0.24167395
8	0.74156285	-1.22476275	0.43038891
8	0.79943084	0.87562182	-0.36118193
6	-0.34526593	1.19658875	0.39139892
1	-0.21279196	0.97960080	1.44958170
1	-1.26107074	0.52409889	0.02426500
1	-0.60183588	2.22961854	0.18155896
1	-1.46556970	-1.21674275	0.06586699
8	-2.04364358	-0.51815289	-0.29038994
1	2.14794556	-0.50847090	-0.85015983
C	onformer #2		
	Χ	Y	Ζ
6	1.37236872	-0.15838097	-0.41156792
8	1.45922270	-0.94849881	0.47417390
8	0.46634690	0.83174083	-0.48219790

6	-0.45952591	0.90323081	0.57392488
1	-0.01027800	0.66806086	1.53716068
1	-1.29147074	0.09227098	0.40916592
1	-0.92915281	1.88070962	0.53789689
1	-2.37529751	-0.27924994	-0.99855480
8	-2.28709353	-0.72223785	-0.13779397
1	2.02133058	-0.11892398	-1.29326974
~			

	X	Y	Z
6	-1.49718758	-0.54767727	-0.00031807
8	-2.18506347	0.42533951	-0.00165307
8	-0.15667786	-0.54011923	0.00175193
6	0.44729199	0.73592052	0.00173593
1	0.22617402	1.29431640	-0.90559589
1	1.62920175	0.51401860	-0.00085907
1	0.22993102	1.29242440	0.91116974
1	2.46745062	-1.00630407	0.00290293
8	2.79243653	-0.09048925	-0.00204507
1	-1.85894548	-1.58176307	-0.00055507

	X	Y	Z
6	1.09708877	-0.18701896	0.30331294
8	2.11094457	-0.65375487	-0.09519998
8	0.39051592	0.71155385	-0.41625091
6	-0.81574983	1.14811477	0.14617297
1	-0.71269886	1.45871870	1.18758976
1	-1.58358568	0.26654595	0.15446497
1	-1.21468875	1.93951160	-0.48017390
1	-1.85611362	-1.19279875	-0.90242182
8	-2.12062257	-1.03404279	0.02033500
1	0.63235487	-0.42860591	1.27256074

	Χ	Y	Z		
6	-1.05442579	-0.30291494	0.23092195		
8	-2.14300956	-0.66504687	-0.06591699		
8	-0.49190390	0.79627384	-0.31963493		
6	0.77377384	1.15306576	0.15454097		
1	1.10830177	2.02516059	-0.39887992		
1	1.51199769	0.28024094	-0.07890698		
1	0.79014584	1.31730373	1.23316975		
1	2.88741841	-0.85842283	0.39350692		
8	2.10796557	-1.01341679	-0.16677597		
1	-0.39836692	-0.80766684	0.95695680		

3. Product

P₁: (CO)OCH₃

	Χ	Y	Z		
С	-0.81284400	0.50899500	-0.00000600		
0	-1.41335600	-0.50629000	0.00000100		
0	0.47587500	0.73398600	0.00002100		
С	1.30786700	-0.45078200	-0.00002600		
Η	1.09625800	-1.04191500	-0.88897500		
Η	1.10231700	-1.03747900	0.89332100		
Н	2.33113500	-0.09145900	-0.00432200		
P ₂ :	H(CO)OCH ₂				
	X	Y	Z		
С	0.76453500	0.44516200	-0.00492700		
0	1.29579300	-0.62026900	0.00448200		

O -0.56990000 0.64669200 -0.00082800

С	-1.38286600	-0.44452900	0.02911700
Η	-2.42784100	-0.21110900	-0.06229800
Η	-0.94154200	-1.41865300	-0.09273100
Η	1.27222900	1.41457300	-0.01934200

4. H-bonded Complexes

RC₁:

	X	Y	Z
С	-0.25077200	0.82031300	0.00055100
0	-1.31773600	1.35098800	-0.00054000
0	-0.05717400	-0.50594200	0.00068600
С	-1.25040500	-1.29688300	-0.00023000
Н	0.71718000	1.33796900	0.00175700
Н	-1.83957700	-1.08114100	-0.88981200
Н	-1.84429600	-1.07623700	0.88494400
Н	-0.92402300	-2.33196100	0.00341400
0	2.72544500	-0.00075400	-0.00040500
Н	2.09349900	-0.74354300	-0.00016200

PC₁:

	X	Y	Z
С	-0.28866800	0.78514900	-0.00909600
0	-1.22402300	1.49941400	0.00872400
0	-0.21110700	-0.52346400	-0.01445100
С	-1.47988200	-1.22633200	0.00501300
Н	2.59585800	0.78468200	-0.04875500
Н	-2.05510500	-0.95349700	-0.87706700
Н	-2.02546600	-0.95811800	0.90713100
Н	-1.22954300	-2.28139700	-0.00192700
0	2.84881800	-0.14113900	0.00984100
Н	2.01604500	-0.62305900	0.01219800

D/	r
ĸ	-2:

	X	Y	Z
С	1.13919300	-0.79211500	0.00021500
0	0.05211300	-1.30209100	-0.00053400
0	1.38239800	0.50570700	0.00049200
С	0.23404700	1.36393900	-0.00041700
Н	-0.36910500	1.18578100	0.88943400
Н	-0.36868800	1.18448900	-0.89029200
Н	0.62268800	2.37668800	-0.00104200
Н	-1.76219900	-0.63411300	-0.00022900
0	-2.48952600	0.02290800	0.00036800
Н	2.07798800	-1.35598500	0.00073100
PC ·			
I C ₂ .			
102.	X	Y	Z
С С	X 0.70487900	Y -0.85240500	Z -0.37891100
С О	X 0.70487900 0.25892500	Y -0.85240500 -1.30558900	Z -0.37891100 0.63143200
С 0 0	X 0.70487900 0.25892500 0.99645300	Y -0.85240500 -1.30558900 0.44737000	Z -0.37891100 0.63143200 -0.57410800
С 0 0 С	X 0.70487900 0.25892500 0.99645300 0.75085700	Y -0.85240500 -1.30558900 0.44737000 1.31558200	Z -0.37891100 0.63143200 -0.57410800 0.44423700
С О О С Н	X 0.70487900 0.25892500 0.99645300 0.75085700 0.62983200	Y -0.85240500 -1.30558900 0.44737000 1.31558200 0.91078300	Z -0.37891100 0.63143200 -0.57410800 0.44423700 1.43599900
С О О С Н Н	X 0.70487900 0.25892500 0.99645300 0.75085700 0.62983200 -1.94291500	Y -0.85240500 -1.30558900 0.44737000 1.31558200 0.91078300 1.08608500	Z -0.37891100 0.63143200 -0.57410800 0.44423700 1.43599900 0.03308600
С О О С Н Н Н	X 0.70487900 0.25892500 0.99645300 0.75085700 0.62983200 -1.94291500 1.06896500	Y -0.85240500 -1.30558900 0.44737000 1.31558200 0.91078300 1.08608500 2.32135400	Z -0.37891100 0.63143200 -0.57410800 0.44423700 1.43599900 0.03308600 0.23230100
С О О С Н Н Н Н	X 0.70487900 0.25892500 0.99645300 0.75085700 0.62983200 -1.94291500 1.06896500 -1.78478900	Y -0.85240500 -1.30558900 0.44737000 1.31558200 0.91078300 1.08608500 2.32135400 -0.38022400	Z -0.37891100 0.63143200 -0.57410800 0.44423700 1.43599900 0.03308600 0.23230100 0.43108900
С О О С Н Н Н Н О	X 0.70487900 0.25892500 0.99645300 0.75085700 0.62983200 -1.94291500 1.06896500 -1.78478900 -2.21161000	Y -0.85240500 -1.30558900 0.44737000 1.31558200 0.91078300 1.08608500 2.32135400 -0.38022400 0.19596500	Z -0.37891100 0.63143200 -0.57410800 0.44423700 1.43599900 0.03308600 0.23230100 0.43108900 -0.21260300

II. IRC Analysis at M06-2x/ma-TZVP

Figure S1. IRC analysis for Rxn. 1 and Rxn. 2 at M06-2x/ma-TZVP level of theory

III. Summary of Kinetic Data

The whole reaction involves two pathways: one is to form products by abstracting with rate coefficient k_H , the other is to form stabilized RC by collision with rate coefficient k_s . Note that the k_H and k_s are global rate coefficient (lumped rather than elementary) and therefore, k_H is not necessarily pressure-independent. A simple analysis is provided here to interpret the pressure-dependence of the two rate coefficient.

Scheme 1. Demonstration of the MF + OH reaction: H-abstraction (k_H) and collisional stabilization (k_s)

For the pure H-abstraction channel that forms final products, we have:

$$\frac{d[R]}{dt} = k_H[MF][OH] = k_2[RC^*], \qquad (1)$$

For the stabilization channel that forms products, we have:

$$\frac{d[RC]}{dt} = k_s[MF][OH] = k_c[M][RC^*], \qquad (2)$$

The fate of RC* can be determined as:

$$\frac{d[RC^*]}{dt} = k_1[MF][OH] - k_{-1}[RC^*] - k_2[RC^*] - k_c[M][RC^*],$$
(3)

By adopting the quasi-steady state approximation, we can obtain $k_{\rm H}$ and $k_{\rm s}$ as:

$$k_{H} = \frac{k_{1}k_{2}}{k_{-1} + k_{2} + k_{c}[M]},$$
(4a)

$$k_{s} = \frac{k_{1}k_{c}[M]}{k_{-1} + k_{2} + k_{c}[M]}.$$
(4b)

It's seen that both k_H and k_s involve the [M] term and thus the pressure effect. It's also seen that k_H and k_s are internally correlated by $k_c[M]$ term. At high-temperatures, k_c that represents the deactivation rate coefficient becomes extremely small, i.e. $k_c \rightarrow 0$. Therefore, the rate coefficient of pure H-abstraction k_H becomes pressure-independent (close to HPL) since:

$$k_{H} \approx \frac{k_{1}k_{2}}{k_{-1} + k_{2}},$$
 (5)

At very low temperatures where k_c matters, the rate coefficient becomes pressure-dependent. Increased pressure leads to larger [M] and thus k_H will decreases. As the pressure decreases to extremely low, i.e. [M] \rightarrow 0, the rate coefficient will again approach to the HPL. On the contrary, k_s will increase due to increased pressures, as seen in Equation (4b).

Table S1 Rate coefficient of H-abstraction at 20 K from MF by OH radical with He and N2 as the bath gas (units in $cm^3 \cdot molec^{-1} \cdot s^{-1}$)

	0.001 bar	0.01 bar	0.1 bar	1.0 bar	10 bar	100 bar
in He	6.31E-11	8.09E-11	2.85E-12	3.67E-13	5.84E-15	6.34E-17
in N ₂	6.97E-11	6.94E-11	3.73E-11	8.57E-12	1.14E-12	1.21E-13

Figure S2. Rate coefficient of H-abstraction from MF by OH radical with He as bath gas

Figure S3. Plots of the pressure-and temperature-dependent rate coefficient of MF + OH with He as the bath gas.

Figure S4. Rate coefficients of MF + OH as the function of pressures at 20,40,50, 60 K. Bath gas including nitrogen (N2) and helium (He) are considered. The experimental measurements at interstellar temperatures were benchmarked by Jiménez et al^{11} .

Figure S5. The rate coefficient of MF+OH reactions at 20-2000 K and at 0.001 bar in N_2 . The shadow region indicate the uncertainty caused by an uncertainty of 0.2 kcal·mol-1 in energy barrier.

Т	0.001 Bar	0.01 Bar	0.1 Bar	1.0 Bar	10 Bar	100 bar
20	6.31E-11	8.09E-11	2.85E-12	3.67E-13	5.84E-15	6.34E-17
30	3.04E-11	3.77E-11	1.14E-11	9.17E-13	2.04E-14	2.60E-16
40	1.70E-11	2.03E-11	1.08E-11	1.14E-12	3.57E-14	5.87E-16
50	1.04E-11	1.21E-11	8.43E-12	1.13E-12	4.73E-14	1.02E-15
60	6.76E-12	7.64E-12	6.25E-12	1.03E-12	5.46E-14	1.53E-15
70	4.62E-12	5.12E-12	4.56E-12	9.00E-13	5.80E-14	2.04E-15
80	3.28E-12	3.58E-12	3.34E-12	7.71E-13	5.88E-14	2.51E-15
90	2.41E-12	2.59E-12	2.50E-12	6.62E-13	5.84E-14	2.95E-15
100	1.82E-12	1.94E-12	1.90E-12	5.70E-13	5.75E-14	3.36E-15
150	6.28E-13	6.46E-13	6.47E-13	3.09E-13	5.56E-14	5.39E-15
200	3.27E-13	3.30E-13	3.27E-13	2.08E-13	6.15E-14	8.71E-15
250	2.33E-13	2.33E-13	2.27E-13	1.70E-13	7.31E-14	1.49E-14
300	2.13E-13	2.12E-13	2.07E-13	1.70E-13	9.11E-14	2.57E-14
350	2.33E-13	2.33E-13	2.27E-13	1.95E-13	1.21E-13	4.40E-14
400	2.85E-13	2.84E-13	2.79E-13	2.49E-13	1.69E-13	7.28E-14
450	3.67E-13	3.66E-13	3.62E-13	3.34E-13	2.43E-13	1.18E-13
500	4.81E-13	4.81E-13	4.78E-13	4.53E-13	3.53E-13	1.88E-13
600	8.18E-13	8.18E-13	8.16E-13	7.98E-13	6.96E-13	4.36E-13
700	1.31E-12	1.31E-12	1.31E-12	1.30E-12	1.21E-12	8.78E-13
800	1.97E-12	1.97E-12	1.97E-12	1.97E-12	1.90E-12	1.53E-12
900	2.81E-12	2.81E-12	2.81E-12	2.81E-12	2.81E-12	2.41E-12
1000	3.80E-12	3.80E-12	3.80E-12	3.80E-12	3.80E-12	3.45E-12
1100	4.96E-12	4.96E-12	4.96E-12	4.96E-12	4.96E-12	4.96E-12
1200	6.28E-12	6.28E-12	6.28E-12	6.28E-12	6.28E-12	6.28E-12
1300	7.76E-12	7.76E-12	7.76E-12	7.76E-12	7.76E-12	7.76E-12
1400	9.40E-12	9.40E-12	9.40E-12	9.40E-12	9.40E-12	9.40E-12
1500	1.12E-11	1.12E-11	1.12E-11	1.12E-11	1.12E-11	1.12E-11
1600	1.31E-11	1.31E-11	1.31E-11	1.31E-11	1.31E-11	1.31E-11
1700	1.53E-11	1.53E-11	1.53E-11	1.53E-11	1.53E-11	1.53E-11
1800	1.76E-11	1.76E-11	1.76E-11	1.76E-11	1.76E-11	1.76E-11
1900	2.00E-11	2.00E-11	2.00E-11	2.00E-11	2.00E-11	2.00E-11
2000	2.26E-11	2.26E-11	2.26E-11	2.26E-11	2.26E-11	2.26E-11

Table S2. Detailed H-abstraction rate coefficient k_H of MF + OH with He as the bath gas (units in cm³·molec⁻¹·s⁻¹)

Т	0.001 Bar	0.01 Bar	0.1 Bar	1.0 Bar	10 Bar	100 bar
20	6.97E-11	6.94E-11	3.73E-11	8.57E-12	1.14E-12	1.21E-13
30	3.52E-11	3.52E-11	2.98E-11	1.09E-11	2.12E-12	2.66E-13
40	2.00E-11	2.00E-11	1.73E-11	1.05E-11	2.80E-12	4.41E-13
50	1.24E-11	1.24E-11	1.08E-11	8.87E-12	3.05E-12	6.05E-13
60	8.08E-12	8.08E-12	7.21E-12	7.18E-12	3.00E-12	7.38E-13
70	5.54E-12	5.54E-12	5.02E-12	5.02E-12	2.76E-12	8.19E-13
80	3.94E-12	3.94E-12	3.63E-12	3.63E-12	2.44E-12	8.51E-13
90	2.90E-12	2.90E-12	2.71E-12	2.71E-12	2.12E-12	8.51E-13
100	2.19E-12	2.19E-12	2.08E-12	2.08E-12	1.80E-12	8.14E-13
150	7.43E-13	7.43E-13	7.18E-13	7.18E-13	6.36E-13	5.42E-13
200	3.76E-13	3.76E-13	3.69E-13	3.69E-13	3.34E-13	3.02E-13
250	2.58E-13	2.58E-13	2.57E-13	2.57E-13	2.38E-13	2.20E-13
300	2.28E-13	2.28E-13	2.28E-13	2.28E-13	2.15E-13	2.04E-13
350	2.43E-13	2.44E-13	2.44E-13	2.44E-13	2.35E-13	2.27E-13
400	2.92E-13	2.92E-13	2.93E-13	2.93E-13	2.89E-13	2.85E-13
450	3.73E-13	3.73E-13	3.74E-13	3.75E-13	3.75E-13	3.75E-13
500	4.88E-13	4.88E-13	4.88E-13	4.89E-13	4.89E-13	4.89E-13
600	8.29E-13	8.29E-13	8.29E-13	8.29E-13	8.29E-13	8.29E-13
700	1.34E-12	1.34E-12	1.34E-12	1.34E-12	1.34E-12	1.34E-12
800	2.03E-12	2.03E-12	2.03E-12	2.03E-12	2.03E-12	2.03E-12
900	2.90E-12	2.90E-12	2.90E-12	2.90E-12	2.90E-12	2.90E-12
1000	3.97E-12	3.97E-12	3.97E-12	3.97E-12	3.97E-12	3.97E-12
1100	5.23E-12	5.23E-12	5.23E-12	5.23E-12	5.23E-12	5.23E-12
1200	6.69E-12	6.69E-12	6.69E-12	6.69E-12	6.69E-12	6.69E-12
1300	8.35E-12	8.35E-12	8.35E-12	8.35E-12	8.35E-12	8.35E-12
1400	1.02E-11	1.02E-11	1.02E-11	1.02E-11	1.02E-11	1.02E-11
1500	1.23E-11	1.23E-11	1.23E-11	1.23E-11	1.23E-11	1.23E-11
1600	1.45E-11	1.45E-11	1.45E-11	1.45E-11	1.45E-11	1.45E-11
1700	1.70E-11	1.70E-11	1.70E-11	1.70E-11	1.70E-11	1.70E-11
1800	1.97E-11	1.97E-11	1.97E-11	1.97E-11	1.97E-11	1.97E-11
1900	2.26E-11	2.26E-11	2.26E-11	2.26E-11	2.26E-11	2.26E-11
2000	2.57E-11	2.57E-11	2.57E-11	2.57E-11	2.57E-11	2.57E-11

Table S3. Detailed H-abstraction rate coefficient k_H of MF + OH with N_2 as the bath gas (units in cm³·molec⁻¹·s⁻¹)

т	0.001 D.	0.01 D	0.1 D	10 D.	10 D	100 1	I DI	LIDI	DEM
1	0.001 Bar	0.01 Bar	0.1 Bar	1.0 Bar	10 Bar	100 bar	LPL	HPL	PEM
20	5.48E-13	5.41E-13	3.57E-13	1.60E-13	4.38E-14	6.94E-15	1.14E-15	1.73E-10	2.06E-08
30	1.98E-13	2.29E-13	1.86E-13	1.13E-13	4.70E-14	1.14E-14	1.03E-15	1.93E-10	2.39E-11
40	9.58E-14	1.18E-13	1.07E-13	7.67E-14	4.12E-14	1.41E-14	1.04E-15	8.43E-11	8.85E-13
50	5.51E-14	6.84E-14	6.62E-14	5.26E-14	3.35E-14	1.47E-14	1.13E-15	3.90E-12	1.37E-13
60	3.54E-14	4.37E-14	4.40E-14	3.75E-14	2.69E-14	1.43E-14	1.23E-15	4.17E-13	4.28E-14
70	2.54E-14	3.04E-14	3.12E-14	2.79E-14	2.17E-14	1.35E-14	1.44E-15	9.51E-14	2.06E-14
80	1.94E-14	2.26E-14	2.32E-14	2.14E-14	1.79E-14	1.25E-14	1.73E-15	3.52E-14	1.31E-14
90	1.59E-14	1.78E-14	1.83E-14	1.73E-14	1.52E-14	1.16E-14	2.06E-15	1.81E-14	9.88E-15
100	1.35E-14	1.48E-14	1.52E-14	1.46E-14	1.33E-14	1.09E-14	2.49E-15	1.18E-14	8.50E-15
150	1.22E-14	1.26E-14	1.32E-14	1.34E-14	1.20E-14	1.16E-14	6.33E-15	8.17E-15	9.61E-15
200	1.81E-14	1.83E-14	1.83E-14	1.84E-14	1.84E-14	1.84E-14	1.39E-14	1.43E-14	1.68E-14
250	3.04E-14	3.04E-14	3.05E-14	3.05E-14	3.05E-14	3.05E-14	2.71E-14	2.66E-14	2.99E-14
300	5.05E-14	5.05E-14	5.05E-14	5.05E-14	5.05E-14	5.05E-14	4.77E-14	4.70E-14	5.06E-14
350	8.12E-14	8.12E-14	8.12E-14	8.12E-14	8.12E-14	8.12E-14	7.90E-14	7.82E-14	8.24E-14
400	1.26E-13	1.26E-13	1.26E-13	1.26E-13	1.26E-13	1.26E-13	1.24E-13	1.23E-13	1.28E-13
450	1.88E-13	1.88E-13	1.88E-13	1.88E-13	1.88E-13	1.88E-13	1.88E-13	1.86E-13	1.91E-13
500	2.71E-13	2.71E-13	2.71E-13	2.71E-13	2.71E-13	2.71E-13	2.72E-13	2.69E-13	2.76E-13
600	5.08E-13	5.08E-13	5.08E-13	5.08E-13	5.08E-13	5.08E-13	5.13E-13	5.05E-13	5.18E-13
700	8.55E-13	8.55E-13	8.55E-13	8.55E-13	8.55E-13	8.55E-13	8.67E-13	8.47E-13	8.72E-13
800	1.31E-12	1.31E-12	1.31E-12	1.31E-12	1.31E-12	1.31E-12	1.33E-12	1.29E-12	1.34E-12
900	1.89E-12	1.89E-12	1.89E-12	1.89E-12	1.89E-12	1.89E-12	1.91E-12	1.84E-12	1.93E-12
1000	2.57E-12	2.57E-12	2.57E-12	2.57E-12	2.57E-12	2.57E-12	2.61E-12	2.49E-12	2.62E-12
1100	3.35E-12	3.35E-12	3.35E-12	3.35E-12	3.35E-12	3.35E-12	3.42E-12	3.20E-12	3.42E-12
1200	4.23E-12	4.23E-12	4.23E-12	4.23E-12	4.23E-12	4.23E-12	4.32E-12	4.02E-12	4.32E-12
1300	5.20E-12	5.20E-12	5.20E-12	5.20E-12	5.20E-12	5.20E-12	5.33E-12	4.88E-12	5.33E-12
1400	6.26E-12	6.26E-12	6.26E-12	6.26E-12	6.26E-12	6.26E-12	6.43E-12	5.81E-12	6.43E-12
1500	7.40E-12	7.40E-12	7.40E-12	7.40E-12	7.40E-12	7.40E-12	7.62E-12	6.81E-12	7.60E-12
1600	8.62E-12	8.62E-12	8.62E-12	8.62E-12	8.62E-12	8.62E-12	8.90E-12	7.85E-12	8.88E-12
1700	9.91E-12	9.91E-12	9.91E-12	9.91E-12	9.91E-12	9.91E-12	1.03E-11	8.97E-12	1.03E-11
1800	1.13E-11	1.13E-11	1.13E-11	1.13E-11	1.13E-11	1.13E-11	1.17E-11	1.01E-11	1.17E-11
1900	1 27E-11	1 27E-11	1 27E-11	1 27E-11	1 27E-11	1 27E-11	1 32E-11	1 13E-11	1 32E-11
2000	1.42E-11	1.42E-11	1.42E-11	1.42E-11	1.42E-11	1.42E-11	1.49E-11	1.26E-11	1.49E-11

Table S4. Collection of the pressure-dependent rate coefficient for Rxn. 1 (units in cm³·molec⁻¹·s⁻¹)

Т	0.001 Bar	0.01 Bar	0.1 Bar	10 Bar	10 Bar	100 bar	IDI	ни	DEM
20	0.001 Bai		0.1 Dai	1.0 Bal		100 0ai			F EIVI
20	7.02E-11	7.01E-11	3.75E-11	8.55E-12	1.11E-12	1.17E-13	2.61E-13	3.67E-10	3.20E+35
30	3.50E-11	3.75E-11	2.96E-11	1.08E-11	2.08E-12	2.54E-13	1.91E-13	4.00E-10	3.82E+17
40	1.99E-11	2.16E-11	2.09E-11	1.04E-11	2.76E-12	4.27E-13	1.53E-13	4.25E-10	4.25E+08
50	1.23E-11	1.33E-11	1.44E-11	8.82E-12	3.02E-12	5.91E-13	1.46E-13	4.43E-10	1.86E+03
60	8.05E-12	8.63E-12	9.96E-12	7.14E-12	2.97E-12	7.24E-13	1.13E-13	4.57E-10	5.08E-01
70	5.51E-12	5.88E-12	6.99E-12	5.63E-12	2.74E-12	8.05E-13	9.51E-14	4.65E-10	1.53E-03
80	3.92E-12	4.15E-12	5.00E-12	4.40E-12	2.42E-12	8.38E-13	8.68E-14	4.72E-10	1.99E-05
90	2.87E-12	3.02E-12	3.67E-12	3.47E-12	2.11E-12	8.38E-13	8.47E-14	4.73E-10	7.12E-07
100	2.17E-12	2.27E-12	2.74E-12	2.71E-12	1.79E-12	8.04E-13	7.55E-14	4.60E-10	5.20E-08
150	7.31E-13	7.47E-13	8.50E-13	9.40E-13	7.95E-13	5.30E-13	6.23E-14	1.48E-11	3.14E-11
200	3.59E-13	3.62E-13	3.90E-13	4.23E-13	3.97E-13	3.24E-13	6.13E-14	9.98E-13	1.51E-12
250	2.27E-13	2.29E-13	2.37E-13	2.47E-13	2.41E-13	2.17E-13	7.45E-14	3.14E-13	4.00E-13
300	1.78E-13	1.78E-13	1.83E-13	1.99E-13	1.81E-13	1.73E-13	6.99E-14	1.94E-13	2.26E-13
350	1.62E-13	1.62E-13	1.64E-13	1.71E-13	1.74E-13	1.76E-13	8.47E-14	1.65E-13	1.81E-13
400	1.66E-13	1.66E-13	1.68E-13	1.69E-13	1.71E-13	1.71E-13	1.04E-13	1.66E-13	1.78E-13
450	1.86E-13	1.86E-13	1.86E-13	1.88E-13	1.88E-13	1.88E-13	1.30E-13	1.83E-13	1.94E-13
500	2.17E-13	2.17E-13	2.17E-13	2.17E-13	2.19E-13	2.19E-13	1.65E-13	2.14E-13	2.24E-13
600	3.20E-13	3.20E-13	3.20E-13	3.20E-13	3.20E-13	3.20E-13	2.72E-13	3.14E-13	3.29E-13
700	4.83E-13	4.83E-13	4.83E-13	4.83E-13	4.83E-13	4.83E-13	4.48E-13	4.68E-13	4.95E-13
800	7.11E-13	7.11E-13	7.11E-13	7.11E-13	7.12E-13	7.12E-13	6.86E-13	6.82E-13	7.26E-13
900	1.01E-12	1.01E-12	1.01E-12	1.01E-12	1.01E-12	1.01E-12	9.80E-13	9.65E-13	1.03E-12
1000	1.40E-12	1.40E-12	1.40E-12	1.40E-12	1.40E-12	1.40E-12	1.39E-12	1.32E-12	1.43E-12
1100	1.88E-12	1.88E-12	1.88E-12	1.88E-12	1.88E-12	1.88E-12	1.88E-12	1.76E-12	1.91E-12
1200	2.46E-12	2.46E-12	2.46E-12	2.46E-12	2.46E-12	2.46E-12	2.46E-12	2.29E-12	2.51E-12
1300	3.14E-12	3.14E-12	3.14E-12	3.14E-12	3.14E-12	3.14E-12	3.20E-12	2.91E-12	3.20E-12
1400	3 95E-12	3 95E-12	3 95E-12	3 95E-12	3 95E-12	3 95E-12	4 10E-12	3 62E-12	4 02E-12
1500	4 86E-12	4 86E-12	4 86E-12	4 86E-12	4 86E-12	4 86E-12	5.01E-12	4 45E-12	4 96E-12
1600	5.91E-12	5.91E-12	5.91E-12	5.91E-12	5.91E-12	5.91E-12	6.06E-12	5 40E-12	6.03E-12
1700	7 11E-12	7 11E-12	7 11E-12	7 11E-12	7 11E-12	7 11E-12	7 39E-12	6 44E-12	7 26E-12
1800	8 42F-12	8 42F-12	8 42F-12	8 42F-12	8 42F-12	8 42F-12	8 67F-12	7.62F-12	8 60F-12
1900	9.88F_12	9.88F_12	9.88F_12	9.88F_12	9.88F_12	9.88F_12	1.02F-11	8 92F-12	1 01F-11
2000	1.15E-11	1.15E-11	1.15E-11	1.15E-11	1.15E-11	1.15E-11	1.19E-11	1.03E-11	1.18E-11

Table S5. Collection of the pressure-dependent rate coefficient for Rxn. 2 (units in cm³·molec⁻¹·s⁻¹)

Т	Rxn. 1	Rxn. 2
20	0.988922	1.853978
30	0.988922	1.853978
40	1.012871	1.880198
50	1.037938	1.892023
60	1.060172	1.888252
70	1.080827	1.87594
80	1.097222	1.855556
90	1.112431	1.832724
100	1.125792	1.80905
150	1.180531	1.704425
200	1.233304	1.634907
250	1.302452	1.603996
300	1.391993	1.620112
350	1.50622	1.694737
400	1.634936	1.828263
450	1.772864	2.020101
500	1.910678	2.262834
600	2.157672	2.853968
700	2.34338	3.523143
800	2.456216	4.195676
900	2.508073	4.835307
1000	2.514408	5.427962
1100	2.483667	5.955743
1200	2.436004	6.436004
1300	2.374101	6.86742
1400	2.304569	7.249746
1500	2.231928	7.593373
1600	2.158052	7.898608
1700	2.086785	8.178501
1800	2.01665	8.428012
1900	1.949367	8.648491
2000	1.885548	8.85354

Table S6. The MS-T scaling factors for Rxn. 1 and Rxn. 2 over 20-20000 K at the theory level of M06-2x/ma-TZVP

Sample input file for MS-T calculation

Template of input file for MSTor program
User needs to input correct values for all the keywords

natoms 8 nstr 2 ntor 2 elec 1 0.0 end freqscale 1.000 deltat 0.5 END

\$GENERAL

\$framechain

12

123

end

\$framedef

\$INTDEF

2-1 8-1 1-3 3-4 4-5 4-6 4-7 2-1-8 2-1-3 8-1-3 3-4-6 3-4-7 5-4-6 5-4-7 6-4-7 1-3-4 4-3-1-8 5-4-3-1

END

PCCP

```
$TEMP
```

```
20 30 40 50 60 70 80 90 100 150 200 250 300 350 400 450 500 600. 700. 800. 900. 1000. 1100. 1200. 1300.
 1400. 1500. 1600. 1700. 1800. 1900. 2000.
END
```

```
$structure
               1
 geom
  6 0.82527383 0.43152491 -0.00003200
  8 1.28292474 -0.67192186 0.00001900
  8 -0.47256690 0.72765185 0.00007300
  6 -1.35372072 -0.39789892 -0.00004400
  1 \quad -1.18674476 \ -1.00537079 \quad 0.88834982
  1 -1.18254776 -1.00855579 -0.88541182
  1 -2.35896152 0.01115500 -0.00308400
     1.41607071 1.35518172 -0.00013300
   1
 end
```

```
0.00000
energy
weight
         1
rotsigma 1
# Symmetry point group: Cs
mtor
 2.0180 3.
end
```

```
END
```

6

1

1

\$structure 2 geom 6 -0.68238686 0.31144894 -0.00616400 8 -1.80205663 -0.08490198 0.00843700 8 0.37682192 -0.50606190 -0.01017300 1.65613366 0.11724598 0.00724400 1.83544062 0.60449188 0.96668580 1.74951964 0.84440183 -0.80096684

```
1 2.38457251 -0.67459486 -0.13698897

1 -0.41013192 1.38124572 -0.02132900

end

energy 5.44041

weight 2

rotsigma 1

# Symmetry point group: C1

mtor

3.9646 3.

end
```

```
END
```

Sample input file for MESS calculation (TST)

! Global Section	
TemperatureList[K]	20. 30. 40. 50. 60. 70. 80. 90. 100. 150. 200. 250. 300. 350. 400. 450. 500.
600 700 800 900 1000 11	00 1200 1300 1400 1500 1600 1700 1800 1900 2000
PressureList[bar]	0.001 0.01 0.1 1. 10. 100
EnergyStepOverTempera	ture .2
ExcessEnergyOverTempe	erature 30
ModelEnergyLimit[kcal/r	nol] 400
CalculationMethod	direct
RateOutput	Rxn1.out
LogOutput	Rxn1.log
!EigenvalueOutput	Rxn1ep.out
WellCutoff	10
ChemicalEigenvalueMa	x .2
ChemicalEigenvalueMir	n 1.e-6
! Model Section	
Model	
EnergyRelaxation	
Exponential	
Factor[1/cm]	250 !200
Power	0.8 !.85
ExponentCutoff	15
End	
CollisionFrequency	
LennardJones	
Epsilons[1/cm]	282.5 57.0 !227 67.8
Sigmas[angstrom]	4.71 3.74 !5.85 3.621
Masses[amu]	60 28
End	
!Species	
Well W1 # MF~OH	1
Species	
RRHO	
Geometry[angstrom]	10
С	-0.25077200 0.82031300 0.00055100
0	-1.31773600 1.35098800 -0.00054000

PCCP

0	-0.05717400	-0.50594200	0.00068600
С	-1.25040500	-1.29688300	-0.00023000
Н	0.71718000	1.33796900	0.00175700
Н	-1.83957700	-1.08114100	-0.88981200
Н	-1.84429600	-1.07623700	0.88494400
Н	-0.92402300	-2.33196100	0.00341400
О	2.72544500	-0.00075400	-0.00040500
Н	2.09349900	-0.74354300	-0.00016200
Core RigidRotor			
SymmetryFactor	1		
End			
Frequencies[1/cm]	24		
44.2814			
71.4963			
128.3625			
165.5097			
296.2958			
328.2133			
338.7320			
504.8841			
790.3547			
977.4539			
1056.5992			
1193.6528			
1202.3594			
1251.3466			
1426.1566			
1482.0710			
1492.4851			
1504.8799			
1862.0931			
3095.2097			
3123.6237			
3175.7209			
3203.0190			
3727.6231			
ZeroEnergy[kcal/mo	ol] 0 !-1.875		

End			
End			
Bimolecular	R	#	MF + OH
Fragment	C2H4O2		
RRHO			
Geometry[a	angstrom]	8	
С	0.82527400	0.43152500	-0.00003200
0	1.28292500	-0.67192200	0.00001900
0	-0.47256700	0.72765200	0.00007300
С	-1.35372100	-0.39789900	-0.00004400
Н	-1.18674500	-1.00537100	0.88835000
Н	-1.18254800	-1.00855600	-0.88541200
Н	-2.35896200	0.01115500	-0.00308400
Н	1.41607100	1.35518200	-0.00013300
Core	RigidRotor		
Sym	metryFactor	1	
End			
Freque	ncies[1/cm]	18	
91.3023	3		
318.538	30		
350.641	10		
792.590)3		
985.180)2		
1067.71	163		
1184.58	377		
1204.29	954		
1272.87	776		
1405.55	534		
1475.21	131		
1487.09	945		
1500.42	241		
1850.79	900		
3077.63	375		
3102.38	355		
3157.18	377		
3184.87	780		
ZeroEnergy	/[1/cm]	0	

ElectronicLevels[1/cm] 1
0 1
End
Fragment OH
RRHO
Geometry[angstrom] 2
O 0.00000000 0.00000000 0.10815400
Н 0.00000000 0.00000000 -0.86523400
Core RigidRotor
SymmetryFactor 1
End
Frequencies[1/cm] 1
3738.6669
ZeroEnergy[1/cm] 0
ElectronicLevels[1/cm] 1
0 2
End
GroundEnergy[kcal/mol] 1.874495963
End
Bimolecular P1 # (CO)OCH3 + H2O
Fragment C2H3O2
RRHO
Geometry[angstrom] 7
C -0.81284400 0.50899500 -0.00000600
O -1.41335600 -0.50629000 0.00000100
O 0.47587500 0.73398600 0.00002100
C 1.30786700 -0.45078200 -0.00002600
Н 1.09625800 -1.04191500 -0.88897500
Н 1.10231700 -1.03747900 0.89332100
Н 2.33113500 -0.09145900 -0.00432200
Core RigidRotor
SymmetryFactor 1
End
Frequencies[1/cm] 15
126.8874
293.2097
389.6733

776.0953		
956.1352		
1175.3106		
1181.7938		
1225.6315		
1470.5068		
1492.1729		
1496.7755		
1909.5486		
3092.8521		
3179.1821		
3207.4870		
ZeroEnergy[1/cm] 0		
ElectronicLevels[1/cm] 1		
0 2		
End		
Fragment H2O		
RRHO		
Geometry[angstrom]	3	
O 0.00000000	0.00000000	0.11600300
Н 0.00000000	0.76532600	-0.46401400
Н 0.00000000	-0.76532600	-0.46401400
Core RigidRotor		
SymmetryFactor	2	
End		
Frequencies[1/cm]	3	
1597.3541		
3866.1715		
3974.4742		
ZeroEnergy[1/cm] 0		
ElectronicLevels[1/cm] 1		
0 1		
End		
GroundEnergy[kcal/mol]		-15.80228555 !-17.677+1.187
End		
!Barriers		
Barrier B1 W1 R	# MF	$\sim OH = MF + OH$

RRHO						
Stoichiometry C2H5O3						
Core	Phas	seSpaceTheory				
Fragn	nentG	eometry[angstro	om] 8			
	С	0.82527400	0.43152500	-0.00003200		
	0	1.28292500	-0.67192200	0.00001900		
	Ο	-0.47256700	0.72765200	0.00007300		
	С	-1.35372100	-0.39789900	-0.00004400		
	Н	-1.18674500	-1.00537100	0.88835000		
	Н	-1.18254800	-1.00855600	-0.88541200		
	Н	-2.35896200	0.01115500	-0.00308400		
	Н	1.41607100	1.35518200	-0.00013300		
Fragn	nentG	eometry[angstro	om] 2			
	0	0.00000000	0.00000000	0.10815400		
	Н	0.00000000	0.00000000	-0.86523400		
Symm	netryF	actor	1			
Poten	tialPre	efactor[au]	13.96048875	!13.60473028		
Poten	tialPo	werExponent	6.			
End						
Freque	ncies[1/cm]	19)		
91.302	3					
91.302 318.53	3 80					
91.302 318.53 350.64	.3 80 -10					
91.302 318.53 350.64 792.59	3 80 10 03					
91.302 318.53 350.64 792.59 985.18	3 80 10 03 02					
91.302 318.53 350.64 792.59 985.18 1067.7	3 80 10 03 02 163					
91.302 318.53 350.64 792.59 985.18 1067.7 1184.5	3 80 10 03 02 163 877					
91.302 318.53 350.64 792.59 985.18 1067.7 1184.5 1204.2	3 80 10 03 02 163 877 954					
91.302 318.53 350.64 792.59 985.18 1067.7 1184.5 1204.2 1272.8	3 80 10 03 02 163 877 954 776					
91.302 318.53 350.64 792.59 985.18 1067.7 1184.5 1204.2 1272.8 1405.5	3 80 10 03 02 163 877 954 776 534					
91.302 318.53 350.64 792.59 985.18 1067.7 1184.5 1204.2 1272.8 1405.5 1475.2	3 80 10 03 02 163 877 954 776 534 131					
91.302 318.53 350.64 792.59 985.18 1067.7 1184.5 1204.2 1272.8 1405.5 1475.2 1487.0	3 80 10 03 02 163 877 954 776 534 131 945					
91.302 318.53 350.64 792.59 985.18 1067.7 1184.5 1204.2 1272.8 1405.5 1475.2 1487.0 1500.4	3 80 10 03 02 163 877 954 776 534 131 945 241					
91.302 318.53 350.64 792.59 985.18 1067.7 1184.5 1204.2 1272.8 1405.5 1475.2 1487.0 1500.4 1850.7	3 80 10 03 02 163 877 954 776 534 131 945 241 900					
91.302 318.53 350.64 792.59 985.18 1067.7 1184.5 1204.2 1272.8 1405.5 1475.2 1487.0 1500.4 1850.7 3077.6	3 80 10 03 02 163 877 954 776 534 131 945 241 900 375					
91.302 318.53 350.64 792.59 985.18 1067.7 1184.5 1204.2 1272.8 1405.5 1475.2 1487.0 1500.4 1850.7 3077.6 3102.3	3 80 10 03 02 163 877 954 776 534 131 945 241 900 375 855					

3184	4.8780			
373	8.6669			
Zero	Energy[kcal/m	ol]	1.8744959	63
Elec	tronicLevels[1/	cm] 1		
0	2			
End				
Barrie	r B2 W1 P1		# MF~OH	-> TS -> P2
RRH	0			
Geo	metry[angstrom	ı]	10	
С	0.14400800	0.49404000	-0.00033400	
0	-0.38311600	1.55743200	0.00022600	
0	-0.44866500	-0.69211700	-0.00037700	
С	-1.88370400	-0.65937800	0.00018300	
Н	1.30518200	0.32847200	-0.00065500	
Н	-2.24303100	-0.14358400	-0.88867100	
Н	-2.24233700	-0.14338300	0.88919900	
Н	-2.20254500	-1.69644700	0.00040900	
0	2.53545300	-0.37396500	-0.00000200	
Н	2.19153000	-1.28382700	0.00185800	
Core	e RigidRotor			
Sy	mmetryFactor	1.		
End				
Free	quencies[1/cm]		23	
95.8	8609			
100.	.6793			
161.	.1072			
167.	.3333			
314	.1870			
391	.5209			
669.	.6510			
762.	.0822			
953.	.7332			
993	.5146			
102	7.5409			
118	6.9036			
120	0.4409			

PCCP

1251.2415		
1477.1568		
1495.8540		
1505.1790		
1688.3705		
1894.2250		
3086.6694		
3167.2821		
3207.4579		
3758.9903		
Tunneling Eckart		
ImaginaryFrequency[1/cm]	792.2006	
WellDepth[kcal/mol]	3.635950298	
WellDepth[kcal/mol]	19.43823585	
End		
ZeroEnergy[kcal/mol]		3.635950298
ElectronicLevels[1/cm]	1	
0 2		
End		
End		