Photodissociation of CH₂BrI Using Cavity Ring-Down Spectroscopy: in Search

of BrI Elimination Channel.

Muthiah Balaganesh^{a,b}, Denís Paredes-Roibás^c, Toshio Kasai^{a,d}, King Cheun Lin^{a,b*}

- a. Department of Chemistry, National Taiwan University, Taipei 106, Taiwan.
- b. Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 106, Taiwan.
- c. Dep. CCTT Fisicoquímicas, Fac.Ciencias, UNED, Paseo de la Senda del Rey, 9. 28040-Madrid, Spain.
- Institute of Scientific and Industrial Research, Osaka University, Ibaraki, Osaka 567-0047, Japan

Corresponding author email: kclin@ntu.edu.tw

v'\ v"	0	1	2	3	4	5
0	4.20162 X 10 ⁻⁹	9.91199 X 10 ⁻⁸	1.15388 X 10 ⁻⁶	8.75531 X 10 ⁻⁶	4.87959 X 10 ⁻⁵	2.13164 X 10 ⁻⁴
1	4.39159 X 10 ⁻⁸	9.47727 X 10 ⁻⁷	1.00113 X 10 ⁻⁵	6.83203 X 10 ⁻⁵	3.38982 X 10 ⁻⁴	1.30280 X 10 ⁻³
2	2.51664 X 10 ⁻⁷	4.96456 X 10 ⁻⁶	4.75112 X 10 ⁻⁵	2.90770 X 10 ⁻⁴	1.27841 X 10 ⁻³	4.29142 X 10 ⁻³
3	1.00877 X 10 ⁻⁶	1.82391 X 10 ⁻⁵	1.58458 X 10 ⁻⁴	8.70594 X 10 ⁻⁴	3.38976 X 10 ⁻³	9.90587 X 10 ⁻³
4	3.10398 X 10 ⁻⁶	5.15854 X 10 ⁻⁵	4.07772 X 10 ⁻⁴	2.01366 X 10 ⁻³	6.93877 X 10 ⁻³	1.75821 X 10 ⁻²
5	7.69010 X 10 ⁻⁶	1.17947 X 10 ⁻⁴	8.51389 X 10 ⁻⁴	3.78905 X 10 ⁻³	1.15645 X 10 ⁻²	2.53338 X 10 ⁻²
6	1.60183 X 10 ⁻⁵	2.27708 X 10 ⁻⁴	1.50687 X 10 ⁻³	6.06234 X 10 ⁻³	1.64063 X 10 ⁻²	3.09669 X 10 ⁻²
7	2.94019 X 10 ⁻⁵	3.88955 X 10 ⁻⁴	2.36855 X 10 ⁻³	8.63895 X 10 ⁻³	2.07449 X 10 ⁻²	3.35754 X 10 ⁻²
8	4.86747 X 10 ⁻⁵	6.01543 X 10 ⁻⁴	3.38302 X 10 ⁻³	1.12172 X 10 ⁻²	2.39090 X 10 ⁻²	3.29670 X 10 ⁻²
9	7.42421 X 10 ⁻⁵	8.60315 X 10 ⁻⁴	4.48398 X 10 ⁻³	1.35515 X 10 ⁻²	2.56388 X 10 ⁻²	2.98616 X 10 ⁻²
10	1.05919 X 10 ⁻⁴	1.15487 X 10 ⁻³	5.59687 X 10 ⁻³	1.54555 X 10 ⁻²	2.59440 X 10 ⁻²	2.52365 X 10 ⁻²
11	1.43208 X 10 ⁻⁴	1.47410 X 10 ⁻³	6.66399 X 10 ⁻³	1.68547 X 10 ⁻²	2.50825 X 10 ⁻²	2.00771 X 10 ⁻²
12	1.84699 X 10 ⁻⁴	1.80051 X 10 ⁻³	7.61620 X 10 ⁻³	1.76835 X 10 ⁻²	2.33015 X 10 ⁻²	1.50491 X 10 ⁻²
13	2.28858 X 10 ⁻⁴	2.11913 X 10 ⁻³	8.41215 X 10 ⁻³	1.79686 X 10 ⁻²	2.09288 X 10 ⁻²	1.06193 X 10 ⁻²
14	2.74406 X 10 ⁻⁴	2.42030 X 10 ⁻³	9.04163 X 10 ⁻³	1.78047 X 10 ⁻²	1.82901 X 10 ⁻²	7.02723 X 10 ⁻³

Table 1S: Franck Condon factors for $A^3\Pi_1 \leftarrow X^1\Sigma^+$ transitions of Brl.

v'\ v"	6	7	8	9	10	11
0	7.58589 X 10 ⁻⁴	2.26262 X 10 ⁻³	5.75543 X 10 ⁻³	1.26591 X 10 ⁻²	2.43907 X 10 ⁻²	4.15111 X 10 ⁻²
1	4.02130 X 10 ⁻³	1.02260 X 10 ⁻²	2.17134 X 10 ⁻²	3.87950 X 10 ⁻²	5.85583 X 10 ⁻²	7.42831 X 10 ⁻²
2	1.13622 X 10 ⁻²	2.42160 X 10 ⁻²	4.17830 X 10 ⁻²	5.80398 X 10 ⁻²	6.36136 X 10 ⁻²	5.20788 X 10 ⁻²
3	2.23205 X 10 ⁻²	3.92363 X 10 ⁻²	5.33016 X 10 ⁻²	5.39431 X 10 ⁻²	3.69486 X 10 ⁻²	1.24282 X 10 ⁻²
4	3.33735 X 10 ⁻²	4.72946 X 10 ⁻²	4.80315 X 10 ⁻²	3.09754 X 10 ⁻²	8.10409 X 10 ⁻³	4.03907 X 10 ⁻⁴
5	4.00631 X 10 ⁻²	4.43860 X 10 ⁻²	3.08237 X 10 ⁻²	8.84554 X 10 ⁻³	2.22414 X 10 ⁻⁴	1.35976 X 10 ⁻²
6	4.02121 X 10 ⁻²	3.32114 X 10 ⁻²	1.30357 X 10 ⁻²	1.11313 X 10 ⁻⁴	8.88192 X 10 ⁻³	2.51529 X 10 ⁻²
7	3.50658 X 10 ⁻²	1.98840 X 10 ⁻²	2.45119 X 10 ⁻³	3.36629 X 10 ⁻³	1.89935 X 10 ⁻²	2.32856 X 10 ⁻²
8	2.68684 X 10 ⁻²	8.90118 X 10 ⁻³	7.78543 X 10 ⁻⁵	1.09360 X 10 ⁻²	2.18528 X 10 ⁻²	1.32397 X 10 ⁻²
9	1.81488 X 10 ⁻²	2.34130 X 10 ⁻³	3.06544 X 10 ⁻³	1.65712 X 10 ⁻²	1.76551 X 10 ⁻²	4.04280 X 10 ⁻³
10	1.06348 X 10 ⁻²	4.96478 X 10⁻⁵	7.80766 X 10 ⁻³	1.79360 X 10 ⁻²	1.05660 X 10 ⁻²	1.31712 X 10 ⁻⁴
11	5.16402 X 10 ⁻³	7.60074 X 10 ⁻⁴	1.17668 X 10 ⁻²	1.56753 X 10 ⁻²	4.38262 X 10 ⁻³	1.09550 X 10 ⁻³
12	1.81512 X 10 ⁻³	2.99566 X 10 ⁻³	1.37986 X 10 ⁻²	1.15211 X 10 ⁻²	8.54783 X 10 ⁻⁴	4.41160 X 10 ⁻³
13	2.70841 X 10 ⁻⁴	5.56559 X 10 ⁻³	1.38500 X 10 ⁻²	7.14840 X 10 ⁻³	1.69992 X 10 ⁻⁵	7.71038 X 10 ⁻³
14	3.63033 X 10 ⁻⁵	7.73422 X 10 ⁻³	1.24510 X 10 ⁻²	3.61602 X 10 ⁻³	1.01072 X 10 ⁻³	9.69838 X 10 ⁻³

v'\ v"	12	13	14	15	16	17
0	6.29177 X 10 ⁻²	8.55168 X 10 ⁻²	1.04679 X 10 ⁻¹	1.16290 X 10 ⁻¹	1.17961 X 10 ⁻¹	1.09710 X 10 ⁻¹
1	7.80634 X 10 ⁻²	6.57147 X 10 ⁻²	4.08406 X 10 ⁻²	1.48255 X 10 ⁻²	6.43832 X 10 ⁻⁴	5.53684 X 10 ⁻³
2	2.75789 X 10 ⁻²	5.28445 X 10 ⁻³	1.27747 X 10 ⁻³	1.88157 X 10 ⁻²	4.40285 X 10 ⁻²	5.67382 X 10 ⁻²
3	1.87991 X 10 ⁻⁵	1.07727 X 10 ⁻²	3.36518 X 10 ⁻²	4.46151 X 10 ⁻²	3.17760 X 10 ⁻²	8.79445 X 10 ⁻³
4	1.50946 X 10 ⁻²	3.40607 X 10 ⁻²	3.33020 X 10 ⁻²	1.34208 X 10 ⁻²	5.51524 X 10 ⁻⁵	1.08629 X 10 ⁻²
5	3.00693 X 10 ⁻²	2.60977 X 10 ⁻²	7.00120 X 10 ⁻³	8.59728 X 10 ⁻⁴	1.70469 X 10 ⁻²	3.14616 X 10 ⁻²
6	2.35793 X 10 ⁻²	6.27814 X 10 ⁻³	1.01828 X 10 ⁻³	1.64458 X 10 ⁻²	2.68206 X 10 ⁻²	1.46687 X 10 ⁻²
7	8.69187 X 10 ⁻³	1.59507 X 10 ⁻⁴	1.24942 X 10 ⁻²	2.32287 X 10 ⁻²	1.26548 X 10 ⁻²	1.59589 X 10 ⁻⁴
8	4.64694 X 10 ⁻⁴	6.89991 X 10 ⁻³	1.97565 X 10 ⁻²	1.38485 X 10 ⁻²	7.18605 X 10 ⁻⁴	6.41582 X 10 ⁻³
9	1.69936 X 10 ⁻³	1.45524 X 10 ⁻²	1.60147 X 10 ⁻²	2.98262 X 10 ⁻³	2.64832 X 10 ⁻³	1.59190 X 10 ⁻²
10	7.29521 X 10 ⁻³	1.62075 X 10 ⁻²	7.52889 X 10 ⁻³	1.11279 X 10 ⁻⁴	1.02505 X 10 ⁻²	1.57605 X 10 ⁻²
11	1.19121 X 10 ⁻²	1.24068 X 10 ⁻²	1.41801 X 10 ⁻³	3.84492 X 10 ⁻³	1.41255 X 10 ⁻²	8.68017 X 10 ⁻³
12	1.31984 X 10 ⁻²	6.75022 X 10 ⁻³	8.28777 X 10 ⁻⁵	8.76995 X 10 ⁻³	1.21435 X 10 ⁻²	2.15176 X 10 ⁻³
13	1.14715 X 10 ⁻²	2.27784 X 10 ⁻³	2.19190 X 10 ⁻³	1.12121 X 10 ⁻²	7.18248 X 10 ⁻³	8.63771 X 10 ⁻⁷
14	8.21099 X 10 ⁻³	1.94295 X 10 ⁻⁴	5.32148 X 10 ⁻³	1.05280 X 10 ⁻²	2.66411 X 10 ⁻³	1.62326 X 10 ⁻³

Fig.1S. A portion of BrI spectra acquired in the photolysis of CH_2BrI at 248 nm. (a) Trace acquired experimentally for v = 0 and 1 levels. (b) the spectrum of pure BrI molecule, (c), the simulated counterpart and (d) the background spectrum obtained without irradiation of 248 nm. Partial assignments are added.

Fig.2S. Density of vibrational states of CH_2I_2 , CH_2BrI and CH_2Br_2 as a function of excitation energy.