Supporting Information

Allosteric Na⁺-binding site modulates CXCR4 activation

Xiaojing Cong*a and Jérôme Golebiowski*a,b

^a Institute of Chemistry - Nice, UMR 7272 CNRS - University Côte d'Azur, Nice cedex 2, France.

^bDepartment of Brain & Cognitive Sciences, DGIST, Dalseong-gun, Daegu, Republic of Korea.

* To whom correspondence may be addressed: xiaojing.cong@unice.fr or jerome.golebiowski@unice.fr

Figure S1. (A) Density of Na⁺ ion within *cam*S during 1.7 μ s of brute-force MD simulations. (B) Time-series and distribution plots of the F87^{2.53}-W252^{6.48} Ca distance during the brute-force MD, showing shrinkage of the Na⁺ passage in the CAM receptors.

Figure S2. CAM receptors displayed active-like features during the REST2 MD, contrasting *wt-Na*. Top to bottom: intracellular cleft opening (as measured by R134^{3.50}-K234^{6.30} C α distance), transmission switch activation (smeasured by F248^{6.44}-P211^{5.50} side-chain distance), and hydration in receptor hydrophobic core (number of water molecules within the TM bundle below S123^{3.39} and above I230^{6.26}).

Figure S3. Cα RMSD of the TM6 intracellular end (residues 6.23–6.30) of the three receptors during REST2 MD with respect to that in the X-ray crystal structure of CXCR4 in inactive state (PDB ID: 3ODU) and A2aR in active state (PDB ID: 5G53). While *wt-Na* preserved the initial inactive state (top, black), the CAMs (red and green) showed regular outward movement of TM6 with the RMSD approaching the active state (bottom).

Figure S4. The *wt* receptor without allosteric Na⁺ showed almost no active-like state (0.5% of trajectory) during the REST2 MD but more flexibility than *wt-Na* from TM3 to TM7. **(A)** Contour map of the transmission switch conformation (as measured by F248^{6.44}-P211^{5.50} side-chain distance) and the intracellular cleft (as measured by R134^{3.50}-K234^{6.30} C α distance). **(B)** C α 's RMSF of *wt* (blue) versus *w-Na* (black).

Figure S5. The *wt* receptor without allosteric Na⁺ showed slight differences from *wt-Na* in the allosteric site and the transmission switch during the REST2 MD, especially in the orientation of H294^{7.45} (as measured by the side- chain dihedral χ_1) and F248^{6.44} (as measured by the side-chain distance to P211^{5.50}).

Figure S6. Time-series and distribution plots of the rearrangements of microswitches at the receptor core during the REST2 MD of the three receptors without allosteric Na⁺.

Figure S7. A Na⁺ ion artificially placed at the allosteric site of *camA* and *camS* locked the receptors in inactive state during the REST2 MD, as shown here by contour maps of the transmission switch conformation (as measured by F248^{6.44}-P211^{5.50} side-chain distance) and the intracellular cleft (as measured by R134^{3.50}-K234^{6.30}C α distance).

Figure S8. Protonated D84^{2.50} induced rearrangements of the allosteric site in *wt-ASH* (orange) compared to *wt* (black, D84^{2.50} deprotonated). In *wt-ASH*, the F87^{2.53}-W252^{6.48} and D84^{2.50}-S123^{3.39} distances decreased wteH294^{7.45} and F248^{6.44} rotated. In particular, N119^{3.35} rotated toward the outer face of the TM bundle, same as ithe active-state structures of the μ -opioid receptor (PDB IDs: 6DDE ¹ and 5C1M ²). The rearrangements were correlated and loosely coupled to the intracellular cleft opening (Table S3).

Figure S9. Time series plots of the microswitches and the intracellular cleft sampled during the REST2 MD of the *wt* receptor with D84^{2.50} deprotonated (*wt*, black) or protonated (*wt-ASH*, orange).

Table S1. Allosteric Na⁺-binding site collapses in experimental structures of class A GPCRs in active state. Listed here are Ca distances of the most conserved Na⁺-coordinating residues, $D^{2.50}$ and $S^{3.39}$.

Receptor	State	β2-adrenergic	µ-opioid	M2 muscarinic	Adenosine 2a	Cannabinoid 1
PDB ID Distance (Å)	Active	3SN6 ³	6DDE ¹ /5C1M ²	4MQS ⁴	5G53 ⁵	5XR8 ⁶
		6.4	6.5 / 6.1	6.8	5.9	6.7
	Inactive	2RH1 7	4DKL ⁸	3UON ⁹	4EIY 10	5TGZ 11
		7.8	8.0	8.3	8.2	7.8

Table S2. Spearman's correlation test^a between the rotations of H294^{7.45} (allosteric site) and F248^{6.44} (transmission switch), and the intracellular cleft opening during the REST2 MD. The H294^{7.45} and F248^{6.44} rotations appeared bbe correlated in the CAMs but not in the *wt*. They were less correlations with the cleft opening, indicating loose coupling.

Daira offecture tested	camA		camS		wt	
Failsonealurestesteu	r	P-value	r	P-value	r	P-value
Rotations of H294 ^{7.45} ~ F248 ^{6.44}	-0.72	< 2.2e-16	-0.55	< 2.2e-16	-0.11	< 0.002
H294 ^{7.45} rotation ~ cleft opening	-0.46	< 2.2e-16	0.20	2.5e-08	0.05	0.16
F248 ^{6.44} rotation ~ cleft opening	0.17	7.0e-07	-0.19	7.5e-08	0.02	0.67

^a Tested on the H294^{7,45} side-chain dihedral χ_1 , the F248^{6,44}-P211^{5,50} side-chain distance and the R134^{3,50}-K234^{6,30} Co distance, with a sample size of 800 simulation frames.

Table S3. Spearman's correlation test^a of the movements of the microswitches^b and the intracellular cleft opening in wt-ASH.Listed here are the rvalues, while all the P-values were < 2.2e-16 unless otherwise noted.</td>

r	F87 ^{2.53} -W252 ^{6.48}	D84 ^{2.50} -S123 ^{3.39}	N119 ^{3.35} rotation	H294 ^{7.45} rotation	F248 ^{6.44} rotation
D84 ^{2.50} -S123 ^{3.39}	0.59				
N119 ^{3.35} rotation	-0.47	-0.50			
H2947.45 rotation	-0.61	-0.49	0.62		
F248 ^{6.44} rotation	-0.60	-0.40	0.60	0.49	
Cleft opening	-0.39	-0.26 ^c	0.48	0.45	0.51

^aTested with a sample size of 800 simulation frames.

^bSee Fig. S8 caption for the measurements.

^c *P*-value = 8.58e-14.

Supplementary Methods

Simulation systems. The initial receptor models were built with Modeller v9.15¹² using the crystal structure of human CXCR4 (PDB ID 3ODU¹³) as template. The intracellular loop 3 (residues 271-296), missing in the crystal structures, was trimmed by 18 residues (residues 273-290) in our model as it is presumably flexible and not mandatory for G protein signaling¹⁴. The Desmond-Maestro (v2016.1, non-commercial distribution) tools¹⁵ were used to predict the protonation states and to embed the receptor in a bilayer of POPC: the most abundant phospholipid in animal cell membranes¹⁶. The system was solvated in a periodic 75 × 75 × 105 Å³ box of explicit water and neutralized with 0.15 M of Na⁺ and Cl⁻ ions. Finally, each simulation system consisted of ~50,000 atoms, including ~10,000 water molecules, 31 Na⁺ and 39 Cl⁻ ions. The Amber lipid 14¹⁷, Amber99SB-ildn¹⁸, TIP3P¹⁹ and the Joung-Cheatham²⁰ force field parameters were used for the lipids, the protein, the water molecules and the ions, respectively.

Brute-force MD details. After energy minimization, each system was gradually heated to 310 K with 200 kcal·mol⁻¹·Å⁻¹ restraints on the protein atoms. Bonds involving hydrogen atoms were constrained using the LINCS algorithm ⁹, allowing for a 2-fs time step. Van der Waals and short-range electrostatic interactions were cut off at 8 Å. Long- range electrostatic interactions were computed using Particle Mesh Ewald summation (PME). Two phases of 10- ns equilibration with 15 and 5 kcal·mol⁻¹·Å⁻¹ restraints on the protein, respectively, were performed in the *NPT*- ensemble (*P* = 1 bar, *T*= 310 K) using the Andersen-Parrinello-Rahman barostat ^{6,7} and the Nose-Hoover thermostat

⁸. Semi-isotropic pressure coupling was applied throughout the MD simulations, which allows the simulation box in the *z*-axis (perpendicular to the lipid bilayer) to vary independently of the *x-y* plane. Non-restrained MD were then carried out and production trajectory was collected after 50 ns of equilibration.

Supporting references

- A. Koehl, H. Hu, S. Maeda, Y. Zhang, Q. Qu, J. M. Paggi, N. R. Latorraca, D. Hilger, R. Dawson, H. Matile, G. F. X. Schertler, S. Granier, W. I. Weis, R. O. Dror, A. Manglik, G. Skiniotis and B. K. Kobilka, *Nature*, 2018, DOI: 10.1038/s41586-018-0219-7.
- W.Huang, A.Manglik, A.J. Venkatakrishnan, T.Laeremans, E.N. Feinberg, A.L. Sanborn, H.E. Kato, K.E. Livingston, T.S.Thorsen, R.C.Kling, S.Granier, P.Gmeiner, S.M.Husbands, J.R.Traynor, W.I.Weis, J.Steyaert, R. O. Dror and B. K. Kobilka, *Nature*, 2015, **524**, 315-321.
- 3. S.G. Rasmussen, B. T. DeVree, Y. Zou, A. C. Kruse, K. Y. Chung, T. S. Kobilka, F. S. Thian, P. S. Chae, E. Pardon, D. Calinski, J. M. Mathiesen, S. T. Shah, J. A. Lyons, M. Caffrey, S. H. Gellman, J. Steyaert, G. Skiniotis, W. I.

Weis, R. K. Sunahara and B. K. Kobilka, Nature, 2011, 477, 549-555.

- A. C. Kruse, A. M. Ring, A. Manglik, J. Hu, K. Hu, K. Eitel, H. Hubner, E. Pardon, C. Valant, P. M. Sexton, A. Christopoulos, C. C. Felder, P. Gmeiner, J. Steyaert, W. I. Weis, K. C. Garcia, J. Wess and B. K. Kobilka, *Nature*, 2013, 504, 101-106.
- 5. B. Carpenter, R. Nehmé, T. Warne, A. G. W. Leslie and C. G. Tate, *Nature*, 2016, **536**, 104-107.
- 6. T. Hua, K. Vemuri, S. P. Nikas, R. B. Laprairie, Y. Wu, L. Qu, M. Pu, A. Korde, S. Jiang, J. H. Ho, G. W. Han, K. Ding, X. Li, H. Liu, M. A. Hanson, S. Zhao, L. M. Bohn, A. Makriyannis, R. C. Stevens and Z. J. Liu, *Nature*, 2017, **547**, 468-471.
- V. Cherezov, D. M. Rosenbaum, M. A. Hanson, S. G. Rasmussen, F. S. Thian, T. S. Kobilka, H. J. Choi, P. Kuhn, W. I. Weis, B. K. Kobilka and R. C. Stevens, *Science*, 2007, **318**, 1258-1265.
- 8. A. Manglik, A. C. Kruse, T. S. Kobilka, F. S. Thian, J. M. Mathiesen, R. K. Sunahara, L. Pardo, W. I. Weis, B. K. Kobilka and S. Granier, *Nature*, 2012, **485**, 321-326.
- K. Haga, A. C. Kruse, H. Asada, T. Yurugi-Kobayashi, M. Shiroishi, C. Zhang, W. I. Weis, T. Okada, B. K. Kobilka, T. Haga and T. Kobayashi, *Nature*, 2012, 482, 547-551.
- W.Liu, E.Chun, A.A.Thompson, P.Chubukov, F.Xu, V.Katritch, G.W.Han, C.B.Roth, L.H.Heitman, I.J.AP,
 V. Cherezov and R. C. Stevens, *Science*, 2012, **337**, 232-236.
- T. Hua, K. Vemuri, M. Pu, L. Qu, G. W. Han, Y. Wu, S. Zhao, W. Shui, S. Li, A. Korde, R. B. Laprairie, E. L. Stahl, J. H. Ho, N. Zvonok, H. Zhou, I. Kufareva, B. Wu, Q. Zhao, M. A. Hanson, L. M. Bohn, A. Makriyannis, R. C. Stevens and Z. J. Liu, *Cell*, 2016, **167**, 750-762 e714.
- 12. N. Eswar, B. Webb, M. A. Marti-Renom, M. S. Madhusudhan, D. Eramian, M. Y. Shen, U. Pieper and A. Sali, *Current protocols in bioinformatics*, 2006, **Chapter 5**, Unit-5 6.
- B.Wu, E.Y. Chien, C.D. Mol, G. Fenalti, W. Liu, V. Katritch, R. Abagyan, A. Brooun, P. Wells, F. C. Bi, D. J. Hamel,
 P. Kuhn, T. M. Handel, V. Cherezov and R. C. Stevens, *Science*, 2010, **330**, 1066-1071.
- P. Egloff, M. Hillenbrand, C. Klenk, A. Batyuk, P. Heine, S. Balada, K. M. Schlinkmann, D. J. Scott, M. Schutz and
 A. Pluckthun, *Proceedings of the National Academy of Sciences of the United States of America*, 2014, **111**, E655-662.
- 15. Journal, 2016.
- 16. N. H. Tattrie, J. R. Bennett and R. Cyr, Can J Biochem Cell B, 1968, 46, 819-&.
- 17. C. J. Dickson, B. D. Madej, A. A. Skjevik, R. M. Betz, K. Teigen, I. R. Gould and R. C. Walker, *J Chem Theory Comput*, 2014, **10**,865-879.
- K. Lindorff-Larsen, S. Piana, K. Palmo, P. Maragakis, J. L. Klepeis, R. O. Dror and D. E. Shaw, *Proteins*, 2010, 78, 1950-1958.

- 19. W. L. Jorgensen, J. Chandrasekhar, J. D. Madura, R. W. Impey and M. L. Klein, *J Chem Phys*, 1983, **79**, 926-935.
- 20. I.S. Joung and T.E. Cheatham, *The Journal of Physical Chemistry B*, 2008, **112**, 9020-9041.