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1. Derivation of Eq.(24) from Eq.(4) in the main paper.

We can write Lagrangian for the present physical system as follows:
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In the region of —h+d <y <0
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Here « is the Lagrangian undetermined multiplier.
As we proved in the main paper, the entropy density are given by the following equation.
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Considering the fact that n _isn’t relevant to n, , we can get
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On the other hand,
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Using Eq. (1-3, 1-4 and 1-5), we can get the variation of the Lagrangian with respect ton, .
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2. Derivation of Eq. (47) in the main paper

%:eoz//—,u+ —kBT(—lnn+ —1+ln(N—n+ —n_—n,, —nOH_)+1)=0 (2-1)
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Considering l//(x — OO)= 0 and n, (x > )= n,, , we derive the chemical potential of the positive ions

in the present system:

p =k, TIn— L (2-2)

Substituting Eq.(2-2) into Eq. (2-1) yields the following equation:
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Rearranging Eq. (2-3) yields the following equation:
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In the same way as in the case of n, , corresponding equations for n_, n,, and n,, are obtained
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Dividing Eq. (2-4) , Eq. (2-6) and Eq. (2-7) by Eq. (2-5) results in the following equations:
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Substituting Egs. (2-8), (2-9) and (2-10) into Eq. (2-5), we can get the following equation:
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Rearrangement of Eq. (2-11) provides the following equation:
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