Ion size effect on electrostatic and electroosmotic properties in soft nanochannels

with pH -dependent charge density - Supplementary Information

Jun-Sik Sin*
Department of Physics, Kim II Sung University, Democratic People's Republic of Korea Natural Science Center, Kim II Sung University, Democratic People’s Republic of Korea
Un-Hyok Kim
Institute of Environmental Science and Water Technology, Academy of Sciences, Pyongyang, Democratic People's Republic of Korea

*Corresponding author e-mail: ryongnam24@yahoo.com

1. Derivation of Eq.(24) from Eq.(4) in the main paper.

We can write Lagrangian for the present physical system as follows:
In the region of $-h \leq y \leq-h+d$,
$L=\int\left(-\frac{\varepsilon_{0} \varepsilon_{r}}{2}|\nabla \psi|^{2}+e_{0} \psi\left(n_{+}-n_{-}\right)+e_{0} \psi\left(n_{H^{+}}-n_{O H^{-}}\right)-e_{0} \varphi(y) n_{A^{-}} \psi-T s-\mu_{+} n_{+}-\mu_{-} n_{-}-\mu_{H^{+}} n_{H^{+}}-\mu_{O H^{-}} n_{O H^{-}}\right) d r$ $+\alpha\left[N_{p}-\frac{\sigma}{a^{3}} \int_{-h}^{-h+d} \varphi(y) d y\right]$

In the region of $-h+d \leq y \leq 0$,
$L=\int\left(-\frac{\varepsilon_{0} \varepsilon_{r}}{2}|\nabla \psi|^{2}+e_{0} \psi\left(n_{+}-n_{-}\right)+e_{0} \psi\left(n_{H^{+}}-n_{O H^{-}}\right)-e_{0} \varphi(y) n_{A^{-}} \psi-T s-\mu_{+} n_{+}-\mu_{-} n_{-}-\mu_{H^{+}} n_{H^{+}}-\mu_{O H^{-}} n_{O H^{-}}\right) d r$

Here α is the Lagrangian undetermined multiplier.

As we proved in the main paper, the entropy density are given by the following equation.
$s=k_{B}\left(N \ln N-n_{+} \ln n_{+}-n_{-} \ln n_{-}-n_{H^{+}} \ln n_{H^{+}}-n_{O H^{-}} \ln n_{O H^{-}}\right)-k_{B}\left(N-n_{+}-n_{-}-n_{H^{+}}-n_{O H^{-}}\right) \ln \left(N-n_{+}-n_{-}-n_{H^{+}}-n_{O H^{-}}\right)$

Considering the fact that $n_{A^{-}}$isn't relevant to n_{+}, we can get

$$
\begin{equation*}
\frac{\partial n_{A^{-}}}{\partial n_{+}}=0 . \tag{1-4}
\end{equation*}
$$

On the other hand,

$$
\begin{equation*}
\frac{\partial \varphi}{\partial n_{+}}=\frac{\partial n_{H^{+}}}{\partial n_{+}}=\frac{\partial n_{O H^{-}}}{\partial n_{+}}=\frac{\partial n_{-}}{\partial n_{+}}=\frac{\partial \psi}{\partial n_{+}}=\frac{\partial(\nabla \psi)}{\partial n_{+}}=0 . \tag{1-5}
\end{equation*}
$$

Using Eq. (1-3, 1-4 and 1-5), we can get the variation of the Lagrangian with respect to n_{+}.

$$
\begin{equation*}
\frac{\delta L}{\delta n_{+}}=e_{0} \psi-\mu_{+}-T \frac{\partial s}{\partial n_{+}}=e_{0} \psi-\mu_{+}-k_{B} T\left(-\ln n_{+}-1+\ln \left(N-n_{+}-n_{-}-n_{H^{+}}-n_{O H^{-}}\right)+1\right)=0 \tag{1-6}
\end{equation*}
$$

2. Derivation of Eq. (47) in the main paper

$$
\begin{equation*}
\frac{\delta L}{\delta n_{+}}=e_{0} \psi-\mu_{+}-k_{B} T\left(-\ln n_{+}-1+\ln \left(N-n_{+}-n_{-}-n_{H^{+}}-n_{O H^{-}}\right)+1\right)=0 \tag{2-1}
\end{equation*}
$$

Considering $\psi(x \rightarrow \infty)=0$ and $n_{+}(x \rightarrow \infty)=n_{+, \infty}$, we derive the chemical potential of the positive ions in the present system:

$$
\begin{equation*}
\mu_{+}=k_{B} T \ln \frac{n_{+\infty}}{N-n_{+\infty}-n_{-\infty}-n_{H^{+} \infty}-n_{O H^{-}}} . \tag{2-2}
\end{equation*}
$$

Substituting Eq.(2-2) into Eq. (2-1) yields the following equation:

$$
\begin{equation*}
e \psi+k_{B} T \ln \frac{n_{+}\left(N-n_{+\infty}-n_{-\infty}-n_{H^{+}}-n_{O H^{-}}\right)}{n_{+\infty}\left(N-n_{+}-n_{-}-n_{H^{+}}-n_{O H^{-}}\right)}=0 . \tag{2-3}
\end{equation*}
$$

Rearranging Eq. (2-3) yields the following equation:

$$
\begin{equation*}
n_{+}=n_{+, \infty} \frac{N-n_{+}-n_{-}-n_{H^{+}}-n_{O H^{-}}}{N-n_{+\infty}-n_{-\infty}-n_{H^{+}}-n_{O H^{-\infty}}} \exp \left(-\frac{e_{0} \psi}{k_{B} T}\right) . \tag{2-4}
\end{equation*}
$$

In the same way as in the case of n_{+}, corresponding equations for $n_{-}, n_{O H^{-}}$and $n_{H^{+}}$are obtained

$$
\begin{gather*}
n_{-}=n_{-, \infty} \frac{N-n_{+}-n_{-}-n_{H^{+}}-n_{O H^{-}}}{N-n_{+\infty}-n_{-\infty}-n_{H^{+} \infty}-n_{O H^{-\infty}}} \exp \left(\frac{e_{0} \psi}{k_{B} T}\right), \tag{2-5}\\
n_{O H^{-}}=n_{O H^{-}, \infty} \frac{N-n_{+}-n_{-}-n_{H^{+}}-n_{O H^{-}}}{N-n_{+\infty}-n_{-\infty}-n_{H^{+} \infty}-n_{O H^{-}}} \exp \left(\frac{e_{0} \psi}{k_{B} T}\right), \tag{2-6}
\end{gather*}
$$

$$
\begin{equation*}
n_{H^{+}}=n_{H^{+}, \infty} \frac{N-n_{+}-n_{-}-n_{H^{+}}-n_{O H^{-}}}{N-n_{+\infty}-n_{-\infty}-n_{H^{+} \infty}-n_{O H^{-}}} \exp \left(-\frac{e_{0} \psi}{k_{B} T}\right) \tag{2-7}
\end{equation*}
$$

Dividing Eq. (2-4) , Eq. (2-6) and Eq. (2-7) by Eq. (2-5) results in the following equations:

$$
\begin{gather*}
\frac{n_{+}}{n_{-}}=\frac{n_{+, \infty}}{n_{-, \infty}} \exp \left(-\frac{2 e_{0} \psi}{k_{B} T}\right), \tag{2-8}\\
\frac{n_{O H^{-}}}{n_{-}}=\frac{n_{O H^{-}-\infty}}{n_{-, \infty}}, \tag{2-9}\\
\frac{n_{H^{+}}}{n_{-}}=\frac{n_{H^{+} \infty}}{n_{-, \infty}} \exp \left(-\frac{2 e_{0} \psi}{k_{B} T}\right), \tag{2-10}
\end{gather*}
$$

Substituting Eqs. (2-8), (2-9) and (2-10) into Eq. (2-5), we can get the following equation:

$$
\begin{equation*}
n_{-}=n_{-, \infty} \frac{1-n_{-} v_{0}\left(\frac{n_{+\infty}}{n_{-\infty}} \exp \left(-\frac{2 e_{0} \psi}{k_{B} T}\right)+1+\frac{n_{O H^{-}}}{n_{-\infty}}+\frac{n_{H^{+} \infty}}{n_{-\infty}} \exp \left(-\frac{2 e_{0} \psi}{k_{B} T}\right)\right)}{1-\left(n_{+\infty}+n_{-\infty}+n_{H^{+}}+n_{O H^{-}}\right)_{0}} \exp \left(\frac{e_{0} \psi}{k_{B} T}\right) . \tag{2-11}
\end{equation*}
$$

Rearrangement of Eq. (2-11) provides the following equation:

$$
\begin{align*}
& n_{-}=\frac{n_{-\infty} \exp \left(\frac{e_{0} \psi}{k_{B} T}\right)}{D_{0}}, \tag{2-12}\\
& n_{+}=\frac{n_{+\infty} \exp \left(-\frac{e_{0} \psi}{k_{B} T}\right)}{D_{0}}, \tag{2-13}\\
& n_{\text {OH }^{-}}=\frac{n_{\text {OH }}=}{} \exp \left(\frac{e_{0} \psi}{k_{B} T}\right) \tag{2-14}\\
& D_{0} \tag{2-15}
\end{align*},
$$

where
$D_{0}=\left(1-n_{+\infty} v_{0}-n_{-\infty} v_{0}-n_{H^{+} \infty} v_{0}-n_{O H^{-\infty}} v_{0}\right)+n_{+\infty} v_{0} \exp \left(-\frac{e_{0} \psi}{k_{B} T}\right)+n_{-\infty} v_{0} \exp \left(\frac{e_{0} \psi}{k_{B} T}\right)+n_{O H^{-\infty}} v_{0} \exp \left(\frac{e_{0} \psi}{k_{B} T}\right)+n_{H^{+} \infty} v_{0} \exp \left(-\frac{e_{0} \psi}{k_{B} T}\right)$.

