Electronic Supplementary Information

Understanding the roles of plasmonic Au nanocrystal size, shape, aspect ratio and loading amount in $Au/g-C_3N_4$ hybrid nanostructures for photocatalytic hydrogen generation

Yanzhen Guo,^a Henglei Jia,^b Jianhua Yang,^b Hang Yin,^b Zhi Yang,^{*a} Jianfang Wang^{*b} and Baocheng Yang^c

^aKey Laboratory for Thin Film and Microfabrication of Ministry of Education, Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
^bDepartment of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
^cHenan Provincial Key Laboratory of Nanocomposites and Applications, Institute of Nanostructured Functional Materials, Huanghe Science and Technology College, Zhengzhou

Nanostructured Functional Materials, Huanghe Science and Technology College, Zhengzhou 450006, China

Supplementary figures

Fig. S1 AFM characterization. (a) AFM image of a representative $g-C_3N_4$ nanosheet. (b) Height profile taken along the white dashed line in the image shown in (a).

Fig. S2 Band alignment of the $g-C_3N_4$ nanosheets. It was determined from the optical absorption and electrochemical Mott-Schottky plots.

Fig. S3 Effect of the CTAB concentration on the assembly. (a) Photographs of the electrostatic assembly between the 18-nm-sized Au NSs and the $g-C_3N_4$ nanosheets at different CTAB concentrations. (b) Absorption spectra of the products obtained at different CTAB concentrations. (c) SEM images of the corresponding products. The content of the Au NSs in the assembly process was all adjusted to be 2.0 wt%.

Fig. S3a shows the photographs of the Au NS18/g- C_3N_4 samples prepared at different CTAB concentrations of 0, 10, 50, 100 and 500 μ M. After the addition of the desired amount of the

Au NSs into the g-C₃N₄ suspension, the resultant mixture was kept under stirring for 3 h to obtain a homogeneous dispersion and then left overnight. Without CTAB, the precipitate at the bottom of the vial is grey pink, while the color of the precipitate is pink when the CTAB concentration is 10, 50 and 100 μ M, respectively. However, when the CTAB concentration is increased to 500 μ M, the supernatant is pink, suggesting an incomplete adsorption of the Au NSs on the g-C₃N₄ nanosheets. These observations suggest that if the CTAB concentration is too low, the colloidal Au NSs tend to aggregate on the g-C₃N₄ nanosheets. On the contrary, if the CTAB concentration is too high, excess CTAB molecules will compete with the CTAB-capped Au NSs, leading to the unsuccessful deposition of the Au NSs on the g-C₃N₄ nanosheets. The effect of the CTAB concentration on the assembly of the Au NSs on the g-C₃N₄ nanosheets was confirmed by the absorption spectra and SEM images of the collected samples in Fig. S3b and c. The appropriate CTAB concentration for the assembly of the Au NSs is in the range of 10–100 μ M.

Fig. S4 Zeta potential of the reaction solution for the assembly of Au NS18/g-C₃N₄. The CTAB concentration in the solution is 50 μ M.

Fig. S5 XRD patterns of the $g-C_3N_4$ nanosheets and the Au NS18/ $g-C_3N_4$ samples of different Au loading amounts. The diffraction peaks of Au are indexed according to the standard pattern of JCPDS No. 01-1174.

Fig. S6 Extinction spectra of the $g-C_3N_4$ and Au NS18/ $g-C_3N_4$ samples in aqueous solutions with the Au contents of 1.0, 1.5, 2.0 and 3.0 wt%. The concentrations of the samples are all 0.5 mg mL⁻¹.

Fig. S7 XPS measurements of the $g-C_3N_4$ nanosheets and the Au NS18/ $g-C_3N_4$ sample. (a) Survey spectra. (b) C 1s spectra. (c) N 1s spectra. (d) Au 4f spectrum. The Au loading in the hybrid nanostructure sample is 2.0 wt%. The labeled spectra in (b and c) are the fitted peaks.

Fig. S8 Nitrogen adsorption-desorption measurements. (a) Adsorption-desorption isotherm curves of the $g-C_3N_4$ and 2.0 wt% Au NS18/g-C₃N₄ samples. (b) Corresponding pore size distribution curves.

Fig. S9 Effect of CTAB on the photocatalytic stability. (a) H_2 evolution over the 2.0 wt% Au NS18/g-C₃N₄ sample under visible light from water containing 2.5 vol% of TEOA in the absence of CTAB. (b) SEM image of the 2.0 wt% Au NS18/g-C₃N₄ sample after H_2 evolution in the absence of CTAB. (c) SEM image of the 2.0 wt% Au NS18/g-C₃N₄ sample after H_2 evolution in the presence of CTAB.

Fig. S9a shows the photocatalytic H₂ evolution over the 2.0 wt% Au NS18/g-C₃N₄ sample under visible light in the absence of CTAB molecules. In the second cycle, the H₂ generation rate decreases from 1098 to 782 µmol g⁻¹ h⁻¹, only 71% of that in the first cycle. We believe that the reduced activity is caused by the competition between TEOA molecules and the g-C₃N₄ nanosheets for the attraction of the CTAB-capped Au NSs. The SEM images of the photocatalysts in Fig. S9b and c after the stability test confirm the speculation. The aggregation of the Au NSs over the g-C₃N₄ nanosheets was observed in the absence of CTAB molecules (Fig. S9b) while there is no sign for the aggregation of the Au NSs after the photocatalytic stability test in the presence of CTAB molecules (Fig. S9c).

Fig. S10 Zeta potential of the Au NS18/g- C_3N_4 hybrid nanostructure sample in the photocatalytic reaction solution. The CTAB concentration is 18 mM.

Fig. S11 FTIR spectra of the Au NPs/g-C₃N₄ and Au NS18/g-C₃N₄ samples.

Fig. S12 Photodeposition of Au NPs on the $g-C_3N_4$ nansheets. (a) SEM image of the Au NPs photodeposited on the $g-C_3N_4$ nanosheets. (b) TEM image of the corresponding sample.

Fig. S13 Emission spectrum of the Xe lamp light source (left axis). The curve labeled with "Xe lamp" represents the full spectrum of the Xe lamp without any filter. The curve labeled with "UV cut" represents the visible light ($\lambda > 420$ nm) that was obtained from the Xe lamp using a 420-nm cut-off filter. The other curves are the transmission spectra of the bandpass filters with different central wavelengths (right axis). These bandpass filters were employed to provide monochromatic light. Their full widths at half maximum are all 20 nm.

Supplementary tables

Table S1 Compositions and pore properties of the g- C_3N_4 nanosheet sample and the 2.0 wt%Au NS18/g- C_3N_4 sample

Sample	C (atomic %)	N (atomic %)	Au (atomic %)	$S_{\rm BET} ({ m m}^2~{ m g}^{-1})$	Pore size (nm)
g-C ₃ N ₄	42.01	57.99		50	30.5
Au NS18/g-C ₃ N ₄	41.91	57.95	0.14	59	31.3

Table S2 Comparison of the H_2 evolution rates among reported photocatalysts made ofplasmonic Au nanoparticles and g-C3N4

Catalyst	Light source	Reaction conditions	H ₂ evolution rate	Reference
			$(\mu mol g^{-1} h^{-1})$	
Au/g-C ₃ N ₄	300 W Xe lamp, $\lambda >$	Aqueous TEOA solution	540	This work
	420 nm	(2.5 vol%)		
Au/CN	300 W Xe lamp, $\lambda >$	Aqueous solution	112	1
	420 nm	containing methanol (20		
		vol%)		
Au clusters/g-C ₃ N ₄	300 W Xe lamp, $\lambda \ge$	Mixed solution of water	230	2
	420 nm	and methanol $(v/v, 4:1)$		
$Au/g-C_3N_4$	High-pressure 300 W	Aqueous TEOA solution	553	3
	Xe lamp, $\lambda > 420$ nm	(10 vol%)		
$Au/g-C_3N_4$	$\lambda \ge 400 \text{ nm}$	Aqueous TEOA solution	~550	4
		(10 vol%)		
$Pt/g-C_3N_4$	300 W Xe lamp, $\lambda >$	Aqueous TEOA solution	73 μ mol h ⁻¹ (the	5
	420 nm	(10 vol%)	amount of the	
			photocatalyst not	
			mentioned)	
$Au/g-C_3N_4$	300 W ultraviolet Xe	Aqueous TEOA solution	94.6	6
	lamp, $\lambda > 420 \text{ nm}$	(10 vol%)		
$Au/g-C_3N_4$	125 W medium-	Aqueous TEOA solution	8870	7
	pressure visible-light	(10 vol%)		
	Hg lamp, $\lambda \ge 400 \text{ nm}$			
CsTaWO ₆ /Au/g-	300 W Xe lamp	Aqueous solution	9.16	8
C_3N_4		containing methanol (20		
		vol%)		

$Au@C_3N_4$	300 W Xe lamp, $\lambda >$	Aqueous TEOA solution	~104.2	9
	420 nm	(6.25 vol%)		
Au/g-CNS	300 W Xe lamp, $\lambda >$	Aqueous solution	79	10
	420 nm	containing lactic acid (20		
		vol%)		
$Au/g-C_3N_4$	150 W Xe lamp, $\lambda >$	$0.25~M~Na_2S$ and $0.35~M$	~1000	11
	420 nm	Na ₂ SO ₃ aqueous solution		
$Au/g-C_3N_4$	300 W Xe lamp, $\lambda >$	Mixture solution of	223	12
	420 nm	methanol and water (v/v,		
		3:7)		
$Au/g-C_3N_4/TiO_2$	300 W Xe lamp, $\lambda >$	Aqueous TEOA solution	42	13
nanofibers	400 nm	(15 vol%)		
$Au/g-C_3N_4$	350 W Xe lamp, $\lambda >$	Aqueous solution	32	14
	400 nm	containing methanol (25		
		vol%)		
$Au/g-C_3N_4/P25$	300 W Xe lamp, $\lambda >$	Mixture solution of	253	15
	420 nm	methanol and water (v/v,		
		3:7)		
$Au/g-C_3N_4$	300 W Xe lamp, $\lambda >$	Aqueous solution	1.25	16
	420 nm	containing methanol (17		
		vol%)		

 Table S3
 Calculated AQY values at different wavelengths^a

Wavelength (nm)	H_2 evolved (µmol h ⁻¹)	Light density (mW cm ⁻²)	Light power (mW)	AQY (%)
380	3.02	1.13	43.43	1.22
420	3.20	3.45	132.56	0.38
475	0.99	3.69	142.06	0.10
520	1.10	3.69	141.83	0.10
550	0.29	3.63	139.8	0.03
600	0.18	3.79	145.68	0.02
650	0	3.84	147.72	0
700	0	3.66	140.93	0

^{*a*} The diameter of the reactor is 7 cm.

An example is given below for the calculation of the AQY.

 $\lambda = 380 \text{ nm}$

The number of incident photons is

$$N_{\text{incident}} = \frac{Pt}{h_{\nu}} = \frac{Pt\lambda}{hc} = \frac{43.43 \times 10^{-3} \times 3600 \times 380 \times 10^{-9}}{6.63 \times 10^{-34} \times 3 \times 10^{8}} = 2.99 \times 10^{20}$$

In the equation above, P is the light power, t is the irradiation time (1 hour = 3600 seconds), h is Planck's constant, v is the light frequency, and c is the speed of light in free space. The number of reacted electrons is

$$N_{\text{reacted}}$$

= 2 × the number of evolved H₂ molecules = 2 × 3.02 × 10⁻⁶ × 6.02
× 10¹⁸

The AQY value can then be calculated as

$$AQY = \frac{N_{\text{reacted}}}{N_{\text{incident}}} \times 100\% = \frac{3.64 \times 10^{18}}{2.99 \times 10^{20}} \times 100\% = 1.2\%$$

$$\lambda = 520 \text{ nm}$$

$$N_{\text{incident}} = \frac{Pt}{h_V} = \frac{Pt\lambda}{hc} = \frac{141.83 \times 10^{-3} \times 3600 \times 520 \times 10^{-9}}{6.63 \times 10^{-34} \times 3 \times 10^8} = 1.33 \times 10^{21}$$

= 2 × the number of evolved H₂ molecules = 2 × $1.10 \times 10^{-6} \times 6.02$ × 10^{18}

$$AQY = \frac{N_{\text{reacted}}}{N_{\text{incident}}} \times 100\% = \frac{1.32 \times 10^{18}}{1.33 \times 10^{21}} \times 100\% = 0.1\%$$

N_{reacted}

Supplementary references

- 1 A. Zada, M. Humayun, F. Raziq, X. L. Zhang, Y. Qu, L. L. Bai, C. L. Qin, L. G. Jing and H. G. Fu, *Adv. Energy Mater.*, 2016, 6, 1601190.
- W. R. Cheng, H. Su, F. M. Tang, W. Che, Y. Y. Huang, X. S. Zheng, T. Yao, J. K. Liu,
 F. C. Hu, Y. Jiang, Q. H. Liu and S. Q. Wei, *J. Mater. Chem. A*, 2017, 5, 19649.
- 3 J. Zeng, T. Song, M. X. Lv, T. T. Wang, J. Y. Qin and H. P. Zeng, RSC Adv., 2016, 6, 54964.
- 4 S. Patnaik, S. Martha, G. Madras and K. Parida, *Phys. Chem. Chem. Phys.*, 2016, 18, 28502.
- 5 Y. F. Zhang, F. Mao, H. J. Yan, K. W. Liu, H. M. Cao, J. G. Wu and D. Q. Xiao, J. Mater. Chem. A, 2015, 3, 109.

- 6 C. C. Han, L. E. Wu, L. Ge, Y. J. Li and Z. Zhao, Carbon, 2015, 92, 31.
- 7 S. Samanta, S. Martha and K. Parida, ChemCatChem, 2014, 6, 1453.
- 8 J. Y. Lang, M. Q. Liu, Y. G. Su, L. J. Yan and X. J. Wang, *Appl. Surf. Sci.*, 2015, **358**, 252.
- 9 S. J. Liang, Y. Z. Xia, S. Y. Zhu, S. Zheng, Y. H. He, J. H. Bi, M. H. Liu and L. Wu, *Appl. Surf. Sci.*, 2015, **358**, 304.
- W. B. Li, C. Feng, S. Y. Dai, J. G. Yue, F. X. Hua and H. Hou, *Appl. Catal. B: Environ.*, 2015, 168–169, 465.
- 11 X. M. Ma, Q. T. Jiang, W. M. Guo, M. Zheng, W. C. Xu, F. B. Ma and B. R. Hou, *RSC Adv.*, 2016, 6, 28263.
- 12 L. H. Xie, Z. Y. Ai, M. Zhang, R. Z. Sun and W. R. Zhao, *PLoS One*, 2016, 11, e0161397.
- 13 X. B. Wei, C. L. Shao, X. H. Li, N. Lu, K. X. Wang, Z. Y. Zhang and Y. C. Liu, *Nanoscale*, 2016, 8, 11034.
- 14 J. Jiang, J. G. Yu and S. W. Cao, J. Colloid Interface Sci., 2016, 461, 56.
- 15 W. R. Zhao, L. H. Xie, M. Zhang, Z. Y. Ai, H. P. Xi, Y. J. Li, Q. M. Shi and J. S. Chen, *Int. J. Hydrogen Energy*, 2016, 41, 6277.
- 16 X. L. Ding, Y. X. Li, J. Zhao, Y. Q. Zhu, Y. Li, W. Y. Deng and C. Y. Wang, APL Mater., 2015, 3, 104410.