Electronic Supplementary Information

Unveiling CO adsorption on Cu Surfaces: New Insights from Molecular Orbital Principles

Kareem M. Gameel, Icell M. Sharafaldin, Amr U. Abourayya, Ahmed H. Biby, Nageh K. Allam*

Energy Materials Laboratory, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt. <u>Nageh.allam@aucegypt.edu</u>

The adsorption energy data from literature presented in Tables S1 and S2 below are specifically for CO adsorption on Cu surfaces at low (Θ = ¹/₄) monolayer coverage. The system that is most frequently studied theoretically, at the specified coverage, is the CO adsorption Cu(111). A fewer theoretical studies for CO adsorption on Cu(100) are available in literature. However, only one theoretical study that included a value for CO (Θ = ¹/₄ ML coverage) adsorption on Cu(110) is available in the literature with a value of -0.94 eV at the ontop-site calculated using GGA PBE functional.

Table S1: The reported adsort	ption energies for CO on Cu	u (111) surfaces in the literature.
-------------------------------	-----------------------------	-------------------------------------

Cu (111)	PW91	RPBE	PBE	LDA	PBEsol	BLYP	PBE0	HSE03
Тор	-0.72[ref 1]	-0.42[ref 1]	-0.75[ref 5]	-1.29[ref 6]	-1.05[ref 7]	-0.27[ref 7]	-0.61[ref 6]	-0.56[ref 6]
	-0.73[ref 2]	-0.42[ref 2]	-0.71[ref 6]					
	-0.75[ref 3]	-0.38[ref 3]	-0.74[ref 7]					
	-0.77[ref 4]	-0.48[ref 4]						
Bridge	-0.74[ref 2]	-0.39[ref 2]	-0.82[ref 5]	-1.86[ref 8]				
	-0.83[ref 3]	-0.39[ref 3]						
	-0.80[ref 4]	-0.46[ref 4]						
Hollow	-0.84[ref 2]	-0.46[ref 2]	-0.87[ref 6]	-1.66[ref 6]	-1.23[ref 7]	-0.34[ref 7]	-0.58[ref 6]	-0.56[ref 6]
fcc	-0.91[ref 3]	-0.44 [ref 3]	-0.80[ref 7]					
	-0.87[ref 4]	-0.50[ref 4]						
Hollow	-0.83[ref 2]	-0.45[ref 2]	-0.89[ref 5]	-1.64[ref 6]			-0.57[ref 6]	-0.54[ref 6]
hcp	0.89[ref 3]	-0.43[ref 3]	-0.86[ref 6]					
	-0.86[ref 4]	-0.49[ref 4]						

Table S2: The reported adsorption energies for CO on Cu (100) surfaces in the literature

Cu (100)	PW91	RPBE
Тор	-0.863[ref 2]	-0.565[ref 2]
Bridge	-0.883[ref 2]	-0.545[ref 2]
Hollow	-0.842[ref 2]	-0.471[ref 2]

References

- 1. Gajdoš, M., Eichler, A. & Hafner, J. CO adsorption on close-packed transition and noble metal surfaces: Trends from ab initio calculations. *J. Phys. Condens. Matter* **16**, 1141–1164 (2004).
- 2. Gajdoš, M. & Hafner, J. CO adsorption on Cu(1 1 1) and Cu(0 0 1) surfaces: Improving site preference in DFT calculations. *Surf. Sci.* **590**, 117–126 (2005).
- 3. Xu, L., Lin, J., Bai, Y. & Mavrikakis, M. Atomic and Molecular Adsorption on Cu(111). *Top. Catal.* **61**, 736–750 (2018).
- 4. Abild-Pedersen, F. & Andersson, M. P. CO adsorption energies on metals with correction for high coordination adsorption sites A density functional study. *Surf. Sci.* **601**, 1747–1753 (2007).
- 5. Mason, S. E., Grinberg, I. & Rappe, A. M. First-principles extrapolation method for accurate CO adsorption energies on metal surfaces. *Phys. Rev. B Condens. Matter Mater. Phys.* **69**, (2004).
- 6. Stroppa, A., Termentzidis, K., Paier, J., Kresse, G. & Hafner, J. CO adsorption on metal surfaces: a hybrid functional study with plane wave basis set. *Phys. Rev. B* **76**, 32 (2007).
- Luo, S., Zhao, Y. & Truhlar, D. G. Improved CO adsorption energies, site preferences, and surface formation energies from a meta-generalized gradient approximation exchange-correlation functional, M06-L. J. Phys. Chem. Lett. 3, 2975–2979 (2012).
- 8. Neef, M. & Doll, K. CO adsorption on the Cu(111) surface: A density functional study. *Surf.~Sci.~* 600, 1085–1092 (2006).