Aleksandra Łachmańska,
 a Paweł Tecmer, a Örs Legeza,
 c and Katharina Boguslawski a,b

 ^a Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Torun, Grudziadzka 5, 87-100 Torun, Poland; E-mail: k.boguslawski@fizyka.umk.pl[†]
 ^b Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100 Torun, Poland
 ^c Strengly Correlated Systems "Lond" Research Crossen, Wiener Research Conten for Physics

^c Strongly Correlated Systems "Lendület" Research Group, Wigner Research Center for Physics, H-1525 Budapest, Hungary

Supplementary Information

Contents

$\mathbf{S1}$	XYZ Coordinates in Angstroms	$\mathbf{S4}$
	S1.1 T-shaped $[NpO_2]_2^{2+}$ (quintet state) in aqueous solution	S4
	S1.2 T-shaped $[NpO_2]_2^{2+}$ (quintet state) and 3 H ₂ O in aqueous solution	S4
	S1.3 T-shaped $[NpO_2]_2^{2+}$ (quintet state) and 4 H ₂ O in aqueous solution	S5
	S1.4 T-shaped $[NpO_2]_2^{2+}$ (quintet state) and 5 H ₂ O in aqueous solution - structure a	S6
	S1.5 T-shaped $[NpO_2]_2^{2+}$ (quintet state) and 5 H ₂ O in aqueous solution - structure b	S7
	S1.6 Diamond-shaped $[NpO_2]_2^{2+}$ (quintet state) in aqueous solution	S7
	S1.7 Diamond-shaped $[\rm NpO_2]_2^{2+}$ and 4 $\rm H_2O$ (quintet state) in aqueous solution	S8
	S1.8 Diamond-shaped $[\rm NpO_2]_2^{2+}$ and 6 $\rm H_2O$ (quintet state) in aqueous solution	S9
	S1.9 Diamond-shaped $[NpO_2]_2^{3+}$ (quartet state) in aqueous solution $\ldots \ldots \ldots \ldots \ldots$	S10
	S1.10Diamond-shaped $[\rm NpO_2]_2^{3+}$ and 4 $\rm H_2O$ (quartet state) in aqueous solution	S10
	S1.11Diamond-shaped $[NpO_2]_2^{3+}$ and 6 H ₂ O (quartet state) in aqueous solution	S11
$\mathbf{S2}$	Bond lengths and angles	S12
S2	Bond lengths and angles S2.1 T-shaped $[NpO_2]_2^{2+}$	S12 S13
S2	Bond lengths and angles S2.1 T-shaped $[NpO_2]_2^{2+}$	S12 S13 S14
S2	Bond lengths and anglesS2.1 T-shaped $[NpO_2]_2^{2+}$ S2.2 Diamond-shaped $[NpO_2]_2^{2+}$ and $[NpO_2]_2^{3+}$ S2.3 Crystalline structures	S12 S13 S14 S15
S2	Bond lengths and angles S2.1 T-shaped [NpO ₂] ₂ ²⁺ S2.2 Diamond-shaped [NpO ₂] ₂ ²⁺ and [NpO ₂] ₂ ³⁺ S2.3 Crystalline structures DFT energetics	 S12 S13 S14 S15 S15
S2 S3 S4	Bond lengths and angles S2.1 T-shaped [NpO2]2+ S2.2 Diamond-shaped [NpO2]2+ S2.3 Crystalline structures DFT energetics Bader population analysis	 S12 S13 S14 S15 S15 S16
S2 S3 S4 S5	Bond lengths and angles S2.1 T-shaped [NpO2]2+ S2.2 Diamond-shaped [NpO2]2+ S2.3 Crystalline structures DFT energetics Bader population analysis Energy decompostion analysis	 S12 S13 S14 S15 S15 S16 S17
S2 S3 S4 S5 S6	Bond lengths and angles S2.1 T-shaped [NpO2]2+ S2.2 Diamond-shaped [NpO2]2+ and [NpO2]2+ and [NpO2]2+ S2.3 Crystalline structures S2.3 Crystalline structures DFT energetics Bader population analysis Energy decompostion analysis Vibrational spectra	 S12 S13 S14 S15 S15 S16 S17 S18
S2 S3 S4 S5 S6 S7	Bond lengths and angles S2.1 T-shaped [NpO ₂] ₂ ²⁺ S2.2 Diamond-shaped [NpO ₂] ₂ ²⁺ and [NpO ₂] ₂ ³⁺ S2.3 Crystalline structures S2.3 Crystalline structures DFT energetics Bader population analysis Energy decomposition analysis Vibrational spectra CASSCF+ECP active space orbitals	 S12 S13 S14 S15 S15 S16 S17 S18 S19

S7.2 Diamond-shaped $[NpO_2]_2^{2+}$	S20
S7.3 Diamond-shaped $[NpO_2]_2^{3+}$	
8 CASSCF+ECP wavefunctions	S21
S8.1 Most important determinants in T-shaped $[NpO_2]_2^{2+}$	
S8.2 Most important determinants in diamond-shaped $[NpO_2]_2^{2+}$	
S8.3 Most important determinants in diamond-shaped $[NpO_2]_2^{3+}$	S24
OCASSCF+DKH2 wavefunctions	S25
S9.1 Most important determinants in T-shaped $[NpO_2]_2^{2+}$	S25
S9.2 Diamond-shaped $[NpO_2]_2^{2+}$ - CAS(8,12)SCF.	S27
S9.3 Diamond-shaped $[NpO_2]_2^{2+}$ - CAS(4,8)SCF.	S29
DMRG mutual information measurements	S 31
S10.1Diamond-shaped $[NpO_2]_2^{3+}$	S31
S10.2Mutual information measurements	S32
1 Excited states	S 33
S11.1T-shaped cluster in CAS(4,8) calculations	S33
S11.1.1 Spin-free (CASSCF and CASPT2) states in models with explicit water S33	r molecules
S11.1.2 Model with full first coordination shell - geometry a	S33
S11.1.3 Model with five water molecules - geometry a	S35
S11.1.4 Model with five water molecules - geometry b	S36
S11.1.5 Model without explicit first coordination shell	
S11.2Diamond-shaped cluster in calculations with $CAS(8,12)$	S40
S11.2.1 Model with full first coordination shell - geometry b	S40
S11.2.2 Model without explicit first coordination shell $\ldots \ldots \ldots \ldots \ldots$	
S11.3Diamond-shaped cluster in calculations with $CAS(4,8)$	S44

S11.3.1 Model with full first coordination sphere - geometry b	S44
S11.3.2 Model without explicit solvent	S46

S1 XYZ Coordinates in Angstroms

S1.1 T-shaped $[NpO_2]_2^{2+}$ (quintet state) in aqueous solution

Np	0.0000000	0.0000000	-2.1239825
0	1.7811044	0.0000000	-2.1376484
Ο	-1.7811044	0.0000000	-2.1376484
Np	0.0000000	0.0000000	2.0860230
Ο	0.0000000	0.0000000	0.2451645
Ο	0.0000000	0.0000000	3.8564210

S1.2 T-shaped $[NpO_2]_2^{2+}$ (quintet state) and 3 H₂O in aqueous solution

Np	0.0000000	0.0000000	-2.0162786
Ο	0.0000000	1.7993662	-1.9936034
Ο	0.0000000	-1.7993662	-1.9936034
Np	0.0000000	0.0000000	2.2381797
Ο	0.0000000	0.0000000	0.3847404
Ο	0.0000000	0.0000000	4.0266122
Η	-2.9808418	0.7801522	2.4106679
Η	-2.9808418	-0.7801522	2.4106679
Ο	-2.4442685	0.0000000	2.1759493
Η	2.9808418	0.7801522	2.4106679
Η	2.9808418	-0.7801522	2.4106679
Ο	2.4442685	0.0000000	2.1759493
Ο	0.0000000	0.0000000	-4.4925744
Η	0.7813539	0.0000000	-5.0740214
Η	-0.7813539	0.0000000	-5.0740214

S1.3 T-shaped $[NpO_2]_2^{2+}$ (quintet state) and 4 H₂O in aqueous solution

Np	0.0000000	0.0000000	-1.7831053
Ο	-0.0000000	1.8016877	-1.8203463
Ο	-0.0000000	-1.8016877	-1.8203463
Np	0.0000000	0.0000000	2.4528528
Ο	0.0000000	0.0000000	0.5839093
Ο	0.0000000	0.0000000	4.2469094
Η	-2.9653457	0.7777507	2.7278525
Η	-2.9653457	-0.7777507	2.7278525
Ο	-2.4617443	0.0000000	2.4215408
Η	2.9653457	0.7777507	2.7278525
Η	2.9653457	-0.7777507	2.7278525
0	2.4617443	0.0000000	2.4215408
Ο	2.2177259	0.0000000	-2.7462833
Η	2.7238956	0.7827571	-3.0304497
Η	2.7238956	-0.7827571	-3.0304497
Ο	-2.2177259	0.0000000	-2.7462833
Η	-2.7238956	0.7827571	-3.0304497
Η	-2.7238956	-0.7827571	-3.0304497

S1.4 T-shaped $[NpO_2]_2^{2+}$ (quintet state) and 5 H₂O in aqueous solution - structure a

Np	0.0000000	0.0000000	-2.6796416
Ο	0.0000000	1.8016458	-2.6717745
Ο	0.0000000	-1.8016458	-2.6717745
Np	0.0000000	0.0000000	1.5674723
Ο	0.0000000	0.0000000	-0.3061474
Ο	0.0000000	0.0000000	3.3701188
Η	-2.9991935	0.7735312	1.7933538
Η	-2.9991935	-0.7735312	1.7933538
0	-2.4762568	0.0000000	1.5102427
Η	2.9991935	0.7735312	1.7933538
Η	2.9991935	-0.7735312	1.7933538
Ο	2.4762568	0.0000000	1.5102427
Η	0.7739045	-3.0610559	1.7143785
Η	-0.7739045	-3.0610559	1.7143785
Ο	0.0000000	-2.5072836	1.5031665
Η	0.7739045	3.0610559	1.7143785
Η	-0.7739045	3.0610559	1.7143785
Ο	0.0000000	2.5072836	1.5031665
0	0.0000000	0.0000000	-5.1673302
Η	0.7806627	0.0000000	-5.7493353
Η	-0.7806627	0.0000000	-5.7493353

S1.5 T-shaped $[NpO_2]_2^{2+}$ (quintet state) and 5 H₂O in aqueous solution - structure b

Np	0.0000000	0.0000000	-2.6130182
Ο	0.0000000	1.8098420	-2.6169631
Ο	0.0000000	-1.8098420	-2.6169631
Np	0.0000000	0.0000000	1.6405488
Ο	0.0000000	0.0000000	-0.2191497
Ο	0.0000000	0.0000000	3.4371858
Η	-2.9657146	0.7806144	-3.2879440
Η	-2.9657146	-0.7806144	-3.2879440
Ο	-2.4021479	0.0000000	-3.1395163
Η	2.9657146	0.7806144	-3.2879440
Η	2.9657146	-0.7806144	-3.2879440
Ο	2.4021479	0.0000000	-3.1395163
Η	0.7753306	-2.9979750	1.9787369
Η	-0.7753306	-2.9979750	1.9787369
Ο	0.0000000	-2.5090895	1.6449324
Η	0.7753306	2.9979750	1.9787369
Η	-0.7753306	2.9979750	1.9787369
Ο	0.0000000	2.5090895	1.6449324
Ο	0.0000000	0.0000000	-5.1185269
Η	0.7803683	0.0000000	-5.6998580
Η	-0.7803683	0.0000000	-5.6998580

S1.6 Diamond-shaped $[NpO_2]_2^{2+}$ (quintet state) in aqueous solution

Ο	-1.6465897	2.7868271	0.0000000
Np	-1.3609598	1.0396809	0.0000000
Ο	-1.0045405	-0.7859830	0.0000000
Ο	1.0045405	0.7859830	0.0000000
Np	1.3609598	-1.0396809	0.0000000
Ο	1.6465897	-2.7868271	0.0000000

S1.7 Diamond-shaped $[NpO_2]_2^{2+}$ and 4 H₂O (quintet state) in aqueous solution

Ο	-2.4637543	2.1664620	0.0000000
Np	-1.5917139	0.5994842	0.0000000
Ο	-0.6925893	-1.0703668	0.0000000
0	0.6925893	1.0703668	0.0000000
Np	1.5917139	-0.5994842	0.0000000
0	2.4637543	-2.1664620	0.0000000
Ο	-1.1420705	0.9515355	2.4012849
Η	-1.7803988	1.4889370	2.9084446
Η	-0.2628685	1.2321301	2.7204852
Ο	1.1420705	-0.9515355	-2.4012849
Η	1.7803988	-1.4889370	-2.9084446
Η	0.2628685	-1.2321301	-2.7204852
Ο	-1.1420705	0.9515355	-2.4012849
Η	-1.7803988	1.4889370	-2.9084446
Η	-0.2628685	1.2321301	-2.7204852
Ο	1.1420705	-0.9515355	2.4012849
Η	1.7803988	-1.4889370	2.9084446
Η	0.2628685	-1.2321301	2.7204852

S1.8 Diamond-shaped $[NpO_2]_2^{2+}$ and 6 H₂O (quintet state) in aqueous solution

Ο	-1.6507979	2.8271489	0.0000000
Np	-1.3436518	1.0507846	0.0000000
0	-1.0121053	-0.8155510	0.0000000
0	1.0121053	0.8155510	0.0000000
Np	1.3436518	-1.0507846	0.0000000
0	1.6507979	-2.8271489	0.0000000
0	-3.7312367	0.6720626	0.0000000
Η	-4.1996821	-0.1828836	0.0000000
Η	-4.4150429	1.3665278	0.0000000
0	3.7312367	-0.6720626	0.0000000
Η	4.1996821	0.1828836	0.0000000
Η	4.4150429	-1.3665278	0.0000000
Ο	-1.3175477	1.0038314	2.4998078
Η	-2.1299137	1.2560596	2.9782802
Η	-0.5922022	1.4222398	3.0000718
0	1.3175477	-1.0038314	-2.4998078
Η	2.1299137	-1.2560596	-2.9782802
Η	0.5922022	-1.4222398	-3.0000718
Ο	-1.3175477	1.0038314	-2.4998078
Η	-2.1299137	1.2560596	-2.9782802
Η	-0.5922022	1.4222398	-3.0000718
0	1.3175477	-1.0038314	2.4998078
Η	2.1299137	-1.2560596	2.9782802
Η	0.5922022	-1.4222398	3.0000718

S1.9 Diamond-shaped $[NpO_2]_2^{3+}$ (quartet state) in aqueous solution

Ο	-1.6918911	2.7775097	0.0000000
Np	-1.3770337	1.0711855	0.0000000
Ο	-1.0486077	-0.7071791	0.0000000
Ο	1.0486077	0.7071791	0.0000000
Np	1.3770337	-1.0711855	0.0000000
0	1.6918911	-2.7775097	0.0000000

S1.10 Diamond-shaped $[NpO_2]_2^{3+}$ and 4 H₂O (quartet state) in aqueous solution

Ο	-2.4266595	2.1743207	0.0000000
Np	-1.5914884	0.6280667	0.0000000
Ο	-0.7197490	-1.0182116	0.0000000
Ο	0.7197490	1.0182116	0.0000000
Np	1.5914884	-0.6280667	0.0000000
0	2.4266595	-2.1743207	0.0000000
Ο	-1.1114694	0.9821589	2.3182527
Η	-1.8042702	1.4006100	2.8684730
Η	-0.2630250	1.3281008	2.6607233
Ο	1.1114694	-0.9821589	-2.3182527
Η	1.8042702	-1.4006100	-2.8684730
Η	0.2630250	-1.3281008	-2.6607233
0	-1.1114694	0.9821589	-2.3182527
Η	-1.8042702	1.4006100	-2.8684730
Η	-0.2630250	1.3281008	-2.6607233
Ο	1.1114694	-0.9821589	2.3182527
Η	1.8042702	-1.4006100	2.8684730
Η	0.2630250	-1.3281008	2.6607233

S1.11 Diamond-shaped $[NpO_2]_2^{3+}$ and 6 H₂O (quartet state) in aqueous solution

0	-1.4930851	2.8689464	0.0000000
Np	-1.3302824	1.1078009	0.0000000
Ο	-1.0689746	-0.7234667	0.0000000
Ο	1.0689746	0.7234667	0.0000000
Np	1.3302824	-1.1078009	0.0000000
Ο	1.4930851	-2.8689464	0.0000000
Ο	-3.6692460	0.9124607	0.0000000
Η	-4.1799378	0.0797127	0.0000000
Η	-4.3132403	1.6463934	0.0000000
Ο	3.6692460	-0.9124607	0.0000000
Η	4.1799378	-0.0797127	0.0000000
Η	4.3132403	-1.6463934	0.0000000
0	-1.2892727	1.1475506	2.3745029
Η	-1.4954957	0.4048886	2.9732642
Η	-1.3342657	1.9612567	2.9138391
Ο	1.2892727	-1.1475506	-2.3745029
Η	1.4954957	-0.4048886	-2.9732642
Η	1.3342657	-1.9612567	-2.9138391
Ο	-1.2892727	1.1475506	-2.3745029
Η	-1.4954957	0.4048886	-2.9732642
Η	-1.3342657	1.9612567	-2.9138391
Ο	1.2892727	-1.1475506	2.3745029
Η	1.4954957	-0.4048886	2.9732642
Η	1.3342657	-1.9612567	2.9138391

S2 Bond lengths and angles

Figure S1: The geometries of CCIs with explicit first coordination sphere. T-shaped clusters are characterized by C_{2v} symmetry and diamond-shaped molecules are featured by C_{2h} symmetry if not mentioned otherwise. The figure shows (a) and (b) the T-shaped molecule with five water molecules – two different configurations, (c) the T-shaped molecule with three water molecules, (d) the T-shaped molecule with four water molecules, (e) the diamond-shaped molecule with four water molecules, (f) the diamond-shaped molecule with six water molecules, (g) and (h) the T-shaped molecule with nine water molecules – two different configurations with symmetry C_s , (i) the diamond-shaped molecule with eight water molecules, and (j) the diamond-shaped molecule with eight water molecules – symmetry C_i ,

Figure S2: BP86 optimized bond lengths [Å] of the T-shaped $[NpO_2]_2^{2+}$ in different environments. The environment is given in parentheses, where "v" indicates vacuum, while "s" corresponds to aqueous solution. M denotes the spin multiplicity. The Np⁽¹⁾–O⁽¹⁾ bond length equals Np⁽¹⁾–O⁽²⁾.

Figure S3: BP86 optimized bond lengths [Å] of the diamond-shaped $[\text{NpO}_2]_2^{2+}$ and $[\text{NpO}_2]_2^{3+}$ in different environments. The environment is given in parentheses, where "v" indicates vacuum, while "s" corresponds to aqueous solution. M denotes the spin multiplicity. The bond lengths $\text{Np}^{(1)}-\text{O}^{(1)}$ and $\text{Np}^{(1)}-\text{O}^{(2)}$ equal $\text{Np}^{(2)}-\text{O}^{(4)}$ and $\text{Np}^{(2)}-\text{O}^{(3)}$, respectively.

S2.1 T-shaped $[NpO_2]_2^{2+}$

Table S1: BP86 optimized structural parameters (bond lengths [Å] and angles [°]) of the T-shaped $[NpO_2]_2^{2+}$ and $[NpO_2]_2^{3+}$ in different environments. M denotes the spin multiplicity. The column "H₂O" indicates the number of explicit water molecules in a given system. Index "p" encodes that water molecules are perpendicular to the dineptunyl molecule. \angle symbolises the angle between Np⁽¹⁾, O⁽¹⁾, and O⁽³⁾. The bond length O⁽¹⁾–Np⁽¹⁾ is equal to O⁽²⁾–Np⁽¹⁾.

		H_2O	$O^{(1)}-Np^{(1)}$	$Np^{(1)}-O^{(3)}$	$O^{(3)}-Np^{(2)}$	$Np^{(2)}-O^{(4)}$	L	$Np^{(1)}$ - H_2O	$Np^{(2)}$ - H_2O	$Np^{(1)}-Np^{(2)}$
ш	$[(NpO_2)_2]^{2+}_{[M=1]}$	_	1.744	2.465	1.839	1.724	90	_	_	4.304
nnc	$[(NpO_2)_2]^{2+}_{[M=3]}$	_	1.741	2.465	1.862	1.742	90	_	_	4.328
Vad	$[(NpO_2)_2]^{2+}_{[M=5]}$	_	1.747	2.500	1.851	1.741	90	_	_	4.351
	$[(NpO_2)_2]^{2+}_{[M=1]}$	_	1.772	2.338	1.834	1.756	91	_	_	4.172
	$[(NpO_2)_2]^{2+}_{[M=3]}$	_	1.778	2.344	1.856	1.775	90	_	_	4.200
	$[(NpO_2)_2]^{2+}_{[M=5]}$	_	1.781	2.211	1.841	1.717	90	_	_	4.052
u	$[(NpO_2)_2]^{2+}_{[M=5]}$	2	1.791	2.348	1.864	1.787	90	_	2.430	4.211
utic	$[(NpO_2)_2]^{2+}_{[M=5]}$	3	1.800	2.401	1.853	1.788	89	2.445	2.476	4.254
Sol	$[(NpO_2)_2]^{2+}_{[M=5]}$	4	1.802	2.367	1.869	1.794	91	2.418	2.462	4.236
	$[(NpO_2)_2]^{2+}_{[M=5],a}$	5	1.802	2.373	1.874	1.803	90	2.488	$2.508/2.480^{p}$	4.247
	$[(NpO_2)_2]^{2+}_{[M=5],b}$	5	1.810	2.394	1.860	1.797	90	$2.506/2.459^{p}$	2.509	4.254
	$[(NpO_2)_2]^{2+}_{[M=5]}$	7	1.799	2.300	1.901	1.812	91	$2.521/2.419^p$	$2.515/2.510^{p}$	4.201
	$[(NpO_2)_2]^{2+}_{[M=5]}$	9	1.827	2.392	1.868	1.813	86	2.848/2.477	2.500/2.510	4.220
	$[(NpO_2)_2]_{[M=5]}^{2+}$	9	1.832	2.390	1.872	1.811	89	2.469 – 2.776	2.505 – 2.541	4.209

The addition of explicit water molecules to the cation-cation neptunyl complex elongates (up to 0.2)

Å) the CCI bond length, which is the bridge between two neptunyl units. The other Np–O distances increase slightly and the corresponding differences amount to 0.1 Å (less than 6% of the total bond length). The angle between the two monomers changes marginally (up to 4°).

S2.2 Diamond-shaped $[NpO_2]_2^{2+}$ and $[NpO_2]_2^{3+}$

Table S2: BP86 optimized structural parameters (bond lengths [Å] and angles [°]) of the diamondshaped $[NpO_2]_2^{2+}$ and $[NpO_2]_2^{3+}$ in different environments. M denotes the spin multiplicity. The column "H₂O" indicates the number of explicit water molecules in a given system. The index "p" encodes the water molecules are perpendicular to the dineptunyl molecule. \angle_1 denotes the angle between O⁽¹⁾, Np⁽¹⁾, and O⁽³⁾, while \angle_2 stands for the angle between O⁽¹⁾, Np⁽¹⁾, and O⁽²⁾. The bond lengths O⁽¹⁾–Np⁽¹⁾ and Np⁽¹⁾–O⁽²⁾ are symmetric to O⁽⁴⁾–Np⁽²⁾ and Np⁽²⁾–O⁽³⁾, respectively.

		H_2O	$O^{(1)}-Np^{(1)}$	$Np^{(1)}-O^{(2)}$	$Np^{(1)}-O^{(3)}$	\angle_1	\angle_2	$Np^{(1)}-H_2O^p$	$Np^{(1)}$ - H_2O	$Np^{(1)}-Np^{(2)}$
н	$[(NpO_2)_2]^{2+}_{[M=1]}$	_	1.738	1.851	2.386	107	179	_	_	3.429
cuu	$[(NpO_2)_2]^{2+}_{[M=3]}$	_	1.737	1.854	2.390	108	180	_	_	3.449
Va	$[(NpO_2)_2]^{2+}_{[M=5]}$	_	1.739	1.852	2.433	109	183	—	_	3.509
	$[(NpO_2)_2]^{2+}_{[M=1]}$	_	1.768	1.858	2.346	105	179	_	_	3.357
	$[(NpO_2)_2]^{2+}_{[M=3]}$	_	1.780	1.818	2.357	106	182	_	_	3.450
	$[(NpO_2)_2]^{2+}_{[M=5]}$	_	1.770	1.860	2.379	107	182	_	_	3.425
u	$[(NpO_2)_2]^{2+}_{[M=5]}$	4	1.783	1.897	2.332	107	181	2.468	_	3.402
utic	$[(NpO_2)_2]^{2+}_{[M=5]}$	6	1.803	1.896	2.367	106	180	2.417	2.500	3.411
Sol	$[(NpO_2)_2]^{2+}_{[M=5]}$	8	1.813	1.883	2.497	108	180	2.494	2.529	3.551
	$[(NpO_2)_2]^{2+}_{[C_i,M=5]}$	8	1.811	1.880	2.476	107	179	2.478	2.489	3.519
	$[(NpO_2)_2]^{3+}_{[M=2]}$	_	1.734	1.815	2.406	109	180	_	_	_
	$[(NpO_2)_2]^{3+}_{[M=4]}$	_	1.735	1.808	2.453	109	180	_	_	3.489
	$[(NpO_2)_2]^{3+}_{[M=4]}$	4	1.757	1.863	2.349	109	180	2.394	_	3.431
	$[(NpO_2)_2]^{3+}_{[M=4]}$	6	1.769	1.850	2.430	104	183	2.347	2.375	3.462
	$[(NpO_2)_2]^{3+}_{[M=4]}$	8	1.775	1.840	2.503	108	177	2.478	2.415	3.542
	$[(NpO_2)_2]^{3+}_{[C_i M=4]}$	8	1.772	1.828	2.609	111	178	2.393	2.442	3.637

In $[(NpO_2)_2]^{2+}_{[M=5]}$, all Np–O bonds are almost unaffected by explicitly including the first coordination sphere as the differences in bond lengths amount to 0.05 Å, which is less than 3% of a total bond length. We observe that the ligated water molecules slightly reduce the bending in the monomers. In $[(NpO_2)_2]^{3+}_{[M=4]}$, the "yl" bond distances are elongated up to 0.1 Å. One pronounced feature is that the number of water molecules influences the CCI bond length, which elongates in the complex with eight water molecules. The linearity of the monomers is slightly distorted (up to 5°) in the compound with eight surrounding water molecules in the first coordination sphere.

S2.3 Crystalline structures

Table S3: Np–O bond lengths in some new crystalline structures. The ranges are for structures, where more than one bond of a given type occurs.

	$Np - O_{yl}$ [Å]	$Np - O_{bridging}$ [Å]	
$Na_4[(NpO_2)_2C_6(COO)_6] \cdot 8 H_2O$	1.85 - 1.91	2.360 - 2.479	[1]
$(NH_4)_3[(NpO_2)_5(C_6H_2(COO)_4)_2] \cdot 7 H_2O$	1.832 - 1.876	2.373 - 2.481	[2]
$[(NpO_2(salen))_4(\mu_8-K)_2][K(18C6)Py]_2$	1.832 - 1.881	2.512	[3]
$(NpO_2)_2(SeO_4)(H_2O)_4$	1.834 - 1.852	2.395 - 2.545	[4]
$(NpO_2)_3(OH)(SeO_3)(H_2O)_2 \cdot H_2O$	1.855 - 1.880	2.314 - 2.595	[5]
$Na(NpO_2)(SeO_3)(H_2O)$	1.82 - 1.829	2.30 - 2.531	[5]
$NpO_2(B_8O_{11}(OH)_4)$	1.737 - 1.746	2.399 - 2.639	[6]
$K_{11}(NpO_2)_{23}(OOCC_6H_5)_{57}(H_2O)_{18+x}$	1.700 - 1.766	2.322 - 2.593	[7]

S3 DFT energetics

Table S4: Relative energies of the CCIs. DFT single-point calculations were performed for (1) the bare neptunyl(V)-neptunyl(V) clusters with geometries optimized without an explicit first coordination sphere (index in parentheses corresponds to the index in Figure S1), (2) neptunyl dimers with complete explicit first coordination sphere, and (3) the neptunyl dimers with four water molecules. The COSMO model was used in all DFT calculations.

			$\Delta E [kcal/mol]$						
	Shape		H_2O	BP86	PBE0	PBE0-D3	B3LYP	B3LYP-D3	CASPT2/SO-RASSI*
(1)	T-shaped	$[(NpO_2)_2]^{2+}_{[(i),M=5]}$	_	6	9	8	8	7	10
(1)	D-shaped	$[(NpO_2)_2]_{[(j),M=5]}^{2+\gamma}$	_	0	0	0	0	0	0
	D-shaped	$[(NpO_2)_2]^{2+}_{[(i),M=5]}$	8	9	7	7	7	7	
	D-shaped	$[(NpO_2)_2]_{[(j),M=5]}^{2+}$	8	0	0	0	0	0	
	D-shaped	$[(NpO_2)_2]^{3+}_{[(i),M=4]}$	8	5	4	5	4	6	
(2)	D-shaped	$[(NpO_2)_2]_{[(j),M=4]}^{3+}$	8	0	0	0	0	0	
	T-shaped	$[(NpO_2)_2]^{2+}_{[(a),M=5]}$	9	0	0	0	0	0	
	T-shaped	$[(NpO_2)_2]_{[(h),M=5]}^{2+}$	9	1	1	0	1	0	
(2)	T-shaped	$[(NpO_2)_2]^{2+}_{[M=5]}$	4	9	0	0	0	0	
(3)	D-shaped	$[(NpO_2)_2]^{2+}_{[M=5]}$	4	0	20	17	15	11	

S4 Bader population analysis

A bond energy analysis [8–10] and a Bader population analysis [11, 12] has been performed with the ADF2014 software suite [13–15] using a TZP basis [16] for all atoms. In all calculations, scalar relativistic effects (ZORA Hamiltonian [17–19]) and solvation effects (COSMO solvation model [20]) have been included. This analysis has been performed for $[NpO_2]_2^{2+}$ (quintet state) in both structural rearrangements and for the diamond-shaped $[NpO_2]_2^{3+}$ (quartet state) with and without an explicit first coordination shell. The molecular geometries were taken from calculations with an explicit first coordination shell as they are closer to experimental values.

Table S5 presents the Bader analysis of the fully hydrated molecule compared to the implicit solvation model. The positive charge is focused on the Np centers, but the explicit water molecules slightly decrease it, which is balanced by the small rise of the negative charge on the O atoms. The T-shaped conformation possesses a dipole moment with a value of -129 a.u. in the direction determined by the $(O^{(3)}-Np^{(2)}-O^{(4)})$ unit.

The Bader population analysis for the diamond-shaped molecules with and without an explicit first coordination shell is presented in Tab S5. The positive charge on the actinide centers is reduced if water molecules are included explicitly in the solvation model. The O atoms that interact with the Np atom of the other monomer are characterized by more negative charge in contrast to the external oxygen atoms. The changes in spin densities centered on the atoms are rather minor for both solvation models.

Table S5: Bader population analysis for the investigated structures (optimized for PBE0 functional combined with ZORA Hamiltonian and with the COSMO solvation model), where M stands for the multiplicity. The charge and population of the $O^{(2)}$ atom is exactly the same as for $O^{(1)}$ in T-shaped structure or the same as for $O^{(3)}$ in diamond-shaped structures. We compare the structures with and without explicit first coordination shell.

		T-shap	T-shaped cluster Diamond-shaped cluster		luster		
		$[(NpO_2$	$)_{2}]_{[M=5]}^{2+}$	$[(NpO_2$	$[(NpO_2)_2]^{2+}_{[M=5]} [(NpO_2)_2]^{3+}_{[M=5]}$		$)_{2}]^{3+}_{[M=4]}$
			$+9H_2O$	_	$+8H_2O$		$+8H_2O$
$Np^{(1)}$	charge	2.80	2.69	2.88	2.70	3.06	2.82
	spin density	2.19	2.16	2.20	2.17	1.69	1.66
$Np^{(2)}$	charge	2.93	2.70	2.88	2.70	3.06	2.82
	spin density	2.23	2.18	2.20	2.17	1.69	1.66
$O^{(1)}$	charge	-0.96	-1.00	-0.88	-0.96	-0.71	-0.81
	spin density	-0.10	-0.09	-0.12	-0.10	-0.11	-0.08
$O^{(3)}$	charge	-0.98	-1.05	-1.00	-1.05	-0.85	-0.92
	spin density	-0.10	-0.07	-0.08	-0.07	-0.08	-0.07
$O^{(4)}$	charge	-0.85	-0.95	-1.00	-1.05	-0.85	-0.92
	spin density	-0.13	-0.10	-0.08	-0.07	-0.08	-0.07

S5 Energy decompositon analysis

Table S6: Energy decomposition analysis [8–10] performed with the ADF 2014 program. [13–15] We used the UKS-DFT method with the hybrid PBE0 exchange–correlation functional, the ZORA scalar relativistic Hamiltonian, [17–19] and the COSMO solvation model. [?,?,20] The TZP basis set was used for all atoms. [16] The interaction energies consist of the Pauli repulsion energies, electronstatic interactions energies, and orbital interactions energies. The interaction energies indicate similar trends as binding energy analysis presented in Table 10 of the manuscript.

	T-shaped	Diamond-shaped	Diamond-shaped
	$[NpO_2]_2^{2+} + 9 H_2O$	$[NpO_2]_2^{2+} + 8 H_2O$	$[NpO_2]_2^{3+} + 8 H_2O$
	$[\rm kcal/mol]$	$[\rm kcal/mol]$	$[\rm kcal/mol]$
Pauli repulsion	46	115	75
Electrostatic interactions	-14	-71	29
Orbital Interactions	-27	-55	-50
Solvation Energy	-188	-198	-375
Total bonding energy	-181	-207	-319
Interaction energy	5	-11	54
	T-shaped	Diamond-shaped	Diamond-shaped
	$[NpO_2]_2^{2+}$	$[NpO_2]_2^{2+}$	$[NpO_2]_2^{3+}$
	[kcal/mol]	[kcal/mol]	[kcal/mol]
Pauli repulsion	40	82	46
Electrostatic interactions	24	-11	117
Orbital Interactions	-23	-53	-70
Solvation Energy	-333	-322	-589
Total bonding energy	-290	-303	-495
Interaction energy	42	18	94
	T-shaped	Diamond-shaped	
	$[NpO_2]_2^{2+} + 4 H_2O$	$[NpO_2]_2^{2+} + 4 H_2O$	
	$[\rm kcal/mol]$	$[\rm kcal/mol]$	
Pauli repulsion	46	151	
Electrostatic interactions	-4	-85	
Orbital Interactions	-22	-69	
Solvation Energy	-247	-236	
Total bonding energy	-225	-238	
Interaction energy	20	-3	

S6 Vibrational spectra

		Compound	Symmetry	Wave number cm^{-1}	IR intensity km/mol	Sele IR	ection rules RAMAN
		$[(NpO_2)_2]^{2+}$	a_1	965	210	yes	yes
	CompVacuum $[(NpC)]$ Vacuum $[(NpC)]$ Solution $[(NpC)]$ Vacuum $[(NpC)]$ Vacuum $[(NpC)]$ Solution $[(NpC)]$ <td>$[(1, p \circ 2)_2][M=1]$</td> <td>b_1</td> <td>994</td> <td>226</td> <td>yes</td> <td>yes</td>	$[(1, p \circ 2)_2][M=1]$	b_1	994	226	yes	yes
sters	Vacuum	$[(NpO_2)_2]^{2+}_{[M=3]}$	b_1	995	226	yes	yes
clus		$[(N_{P}O_{z})_{z}]^{2+}$	a_1	947	203	yes	yes
eq		$[(1402)2]_{[M=5]}$	b_1	984	228	yes	yes
shap			a_1	753	767	yes	yes
Ĥ		$[(NpO_2)_2]^{2+}_{[M=1]}$	a_1	869	636	yes	yes
⊢ Solı	Solution		b_1	896	966	yes	yes
	Solution		a_1	803	577	yes	yes
		$[(NpO_2)_2]^{2+}_{[M=5]}$	a_1	864	613	yes	yes
			b_1	877	IR intensity km/molSelection rules IR210yesyes226yesyes226yesyes226yesyes203yesyes228yesyes767yesyes636yesyes966yesyes577yesyes613yesyes705yesyes345yesno330yesno219yesno368yesno229yesno543yesno1041yesno881yesno960yesno	yes	
ters		$[(NpO_2)_2]^{2+}_{[M=1]}$	$\mathbf{b}_{\mathbf{u}}$	953	577yesyes577yesyes613yesyes705yesyes345yesno330yesno	no	
clus	Vacuum	$[(NpO_2)_2]^{2+}_{[M=3]}$	$\mathbf{b}_{\mathbf{u}}$	953	330	yes	no
ed e		$[(N_{P}O)]^{2+}$	$\mathbf{b}_{\mathbf{u}}$	774	219	yes	no
hap		$[(\mathbf{N}\mathbf{p}\mathbf{O}_2)_2]_{[M=5]}$	$\mathbf{b}_{\mathbf{u}}$	948	368	yes	no
s-pu			$\mathbf{b}_{\mathbf{u}}$	342	229	yes	no
mc	Solution	$[(NpO_2)_2]^{2+}_{[M=5]}$	$\mathbf{b}_{\mathbf{u}}$	735	543	yes	no
Dia			$\mathbf{b}_{\mathbf{u}}$	854	1041	yes	no
		$[(NpO_2)_2]^{3+}_{[M=2]}$	b_u	939	881	yes	no
		$[(NpO_2)_2]^{3+}_{[M=4]}$	$\mathbf{b}_{\mathbf{u}}$	932	960	yes	no

Table S7: Vibrational spectra of T-shaped $[NpO_2]_2^{2+}$ computed using DFT with the BP86 exchangecorrelation functional. M denotes spin multiplicity. Solution effects were included using the COSMO model.

S7 CASSCF+ECP active space orbitals

Please note, that not all orbitals can be clearly named with $D_{\infty h}$ labels as single neptunyl orbitals of different symmetry mix, in particular in the virtual orbital space. The mixed orbitals, which are composed of σ_q^* , π_q^* , and π_u^* orbitals, are:

- in the T-shaped $[NpO_2]_2^{2+}$ cluster: $10a_1$, $13a_1$, $14a_1$, $15a_1$, $16a_1$, $7b_1$, $8b_1$, $6b_2$, $7b_2$, and $8b_2$,

- in the diamond-shaped $[\rm NpO_2]_2^{2+}$ molecule: $9a_g$, $7a_u,\ 8a_u,\ 9a_u,\ 10b_u$, $11b_u,\ 12b_u,\ 7b_g,\ 8b_g,$ and $9b_g,$

- in the diamond-shaped $[NpO_2]_2^{3+}$ complex: $10a_g$, $11a_g$, $13a_g$, $14a_g$, $7a_u$, $8a_u$, $9a_u$, $10b_u$, $12b_u$, $13b_u$, $14b_u$, $6b_g$, $7b_g$, $8b_g$, and $9b_g$.

Table S8: C_{2v} and C_{2h} labels and corresponding $D_{\infty h}$ labels of linear neptunyls.

	T-shaped clusters (C_{2v})	Diamond-shaped clus	sters (C_{2h})
$\mathbf{D}_{\infty h}$ labels	$[NpO_2]_2^{2+}$	$[NpO_2]_2^{2+}$	$[\mathrm{NpO}_2]_2^{3+}$
σ_g	$2a_1 \ 3a_1 \ 4a_1$	$5a_g 5b_u$	$5a_g 5b_u$
σ_q^*	$12a_1 \ 11a_1 \ 4b_1$	$8a_g 8b_u$	$8a_g 8b_u$
π_g	$2b_2 \ 5a_1 \ 2b_1 \ 1b_2$	$4a_g \ 3a_u \ 2b_u \ 3b_u \ 3b_g$	$4a_g \ 3a_u \ 9a_u \ 9b_g$
π_q^*	$10b_2$	11a _g	
π_u	$9a_1 \ 11b_2 \ 10b_1 \ 3b_1 \ 1b_1 \ 3a_2$	$2a_g 2a_u 6a_u 2b_g$	$2a_g 2a_u 6a_u 3b_u 2b_g$
π^*_u	$9b_1 \ 4a_2$		
δ_u	$6a_1 \ 5b_1 \ 1a_2 \ 2a_2$	$6a_g 4a_u 6b_u 4b_g$	$7a_g 5a_u 7b_u 5b_g$
ϕ_u	$7a_1 6b_1 3b_2 4b_2$	$7a_g 5a_u 7b_u 5b_g$	$6a_g 4a_u 6b_u 4b_g$

S7.1 T-shaped $[NpO_2]_2^{2+}$

Figure S4: The CASSCF natural orbitals for the quintet state of the T-shaped $[NpO_2]_2^{2+}$. The corresponding natural occupation numbers are given in parentheses.

S7.2 Diamond-shaped $[NpO_2]_2^{2+}$

Figure S5: The CASSCF natural orbitals for the quintet state of the diamond-shaped $[NpO_2]_2^{2+}$. The corresponding natural occupation numbers are given in parentheses.

S7.3 Diamond-shaped $[NpO_2]_2^{3+}$

Figure S6: The CASSCF natural orbitals for the quintet state of the diamond-shaped $[NpO_2]_2^{3+}$. The corresponding natural occupation numbers are given in parentheses.

S8 CASSCF+ECP wavefunctions

Table S9: Energetics of the diamond-shaped $[NpO_2]_2^{2+}$, diamond-shaped $[NpO_2]_2^{3+}$, and T-shaped $[NpO_2]_2^{2+}$ molecules. For each molecule, the energy differences are calculated with respect to the lowest lying symmetry state.

Diamond-shaped $[NpO_2]_2^{2+}$		Diamo	nd-shaped $[NpO_2]_2^{3+}$	T-shaped $[NpO_2]_2^{2+}$		
State	Energy $[mE_h]$	State	Energy $[mE_h]$	State	Energy $[mE_h]$	
$1^5 A_g$	0.000	$1^4 A_g$	2.583	$1^5 A_1$	0.000	
$2^5 A_g$	0.023	$2^4 A_g$	6.696	$2^5 A_1$	15.837	
$1^5 A_u$	0.005	$1^4 A_u$	3.524	1^5B_1	0.006	
$2^5 A_u$	15.867	$2^4 A_u$	6.692	2^5B_1	32.438	
$1^5 B_u$	15.848	$1^4 B_u$	0.000	1^5B_2	0.006	
$2^5 B_u$	34.335	2^4B_u	3.540	2^5B_2	16.606	
$1^5 B_g$	0.018	$1^4 B_g$	0.002	$1^5 A_2$	0.000	
$2^5 B_g$	15.856	$2^4 B_g$	2.595	$2^5 A_2$	15.837	

S8.1 Most important determinants in T-shaped $[NpO_2]_2^{2+}$.

Table S10: Most important determinants in wave function of the T-shaped $[NpO_2]_2^{2+}$, their weights and occupation of the active space orbitals.

				Orb	oital o	ccupa	tion		
State	Weight	$\mathbf{1a}_1$	$\mathbf{2a}_1$	$\mathbf{1b}_1$	$\mathbf{2b}_1$	$\mathbf{1b}_2$	$\mathbf{2b}_2$	$\mathbf{1a}_2$	$\mathbf{2a}_2$
	0.51	0	0	0	0	1_{α}	1_{α}	1_{α}	1_{α}
151	0.51	1_{lpha}	0	0	1_{α}	0	1_{α}	1_{α}	0
$1 A_1$	-0.49	1_{lpha}	1_{α}	1_{α}	1_{α}	0	0	0	0
	-0.39	0	1_{α}	1_{α}	0	1_{α}	0	0	1_{α}
	0.58	0	0	1_{α}	1_{α}	0	0	1_{α}	1_{α}
95 A	-0.58	1_{lpha}	0	1_{α}	0	1_{α}	0	1_{α}	0
Z^*A_1	0.40	1_{α}	1_{α}	0	0	1_{α}	1_{α}	0	0
	-0.40	0	1_{α}	0	1_{α}	0	1_{α}	$\begin{array}{c} \mathbf{la_2} \\ \mathbf{l}_{\alpha} \\ \mathbf{l}_{\alpha} \\ 0 \\ 0 \\ 0 \\ \mathbf{l}_{\alpha} \\ \mathbf{l}_{\alpha} \\ 0$	1_{α}
	0.50	1_{α}	0	1_{α}	0	1_{α}	1_{α}	0	0
15D	-0.50	0	0	1_{α}	1_{α}	0	1_{α}	0	1_{α}
$1^{\circ}D_1$	0.50	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1_{α}						
	-0.50	1_{α}	1_{α}	0	0	1_{α}	0	$\begin{array}{c} \mathbf{1a_2} \\ 1_{\alpha} \\ 1_{\alpha} \\ 0 \\ 0 \\ 0 \\ 1_{\alpha} \\ 1_{\alpha} \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1_{\alpha} \\ 1_{\alpha} \\ 0 \\ 0 \\ 1_{\alpha} \\ 0 \\ 0 \\ 0 \\ 0 \\ 1_{\alpha} \\ 0 \\ $	0
	0.67	1_{α}	0	1_{α}	0	0	0	1_{α}	1_{α}
95D	-0.48	0	0	1_{α}	1_{α}	1_{α}	0	1_{α}	0
2 D ₁	-0.46	1_{α}	1_{α}	0	0	0	1_{α}	0	1_{α}
	0.33	0	1_{α}	0	1_{α}	1_{α}	1_{α}	0	0
	0.50	1_{α}	0	1_{α}	1_{α}	0	1_{α}	0	0
$1^5 B_2$	0.50	0	0	1_{α}	0	1_{α}	1_{α}	0	1_{α}
1 D ₂	-0.50	0	1_{α}	0	0	1_{α}	0	1_{α}	1_{α}
	-0.50	1_{α}	1_{α}	0	1_{α}	0	0	1_{α}	0
	0.58	1_{α}	0	0	0	0	1_{α}	1_{α}	1_{α}
$2^5 B_{\odot}$	-0.56	1_{α}	1_{α}	1_{α}	0	0	0	0	1_{α}
2 D ₂	-0.42	0	0	0	1_{α}	1_{α}	1_{α}	1_{α}	0
	0.40	0	1_{α}	1_{α}	1_{α}	1_{α}	0	0	0
	0.50	0	0	0	1_{α}	0	1_{α}	1_{α}	1_{α}
$1^5 A_{\odot}$	-0.50	1_{α}	0	0	0	1_{α}	1_{α}	1_{α}	0
1 112	0.50	1_{α}	1_{α}	1_{α}	0	1_{α}	0	0	0
	-0.50	0	1_{α}	1_{α}	1_{α}	0	0	0	1_{α}
	0.57	0	0	1_{α}	0	1_{α}	0	1_{α}	1_{α}
2^5 A $_{\circ}$	-0.50	1_{α}	0	1_{α}	1_{α}	0	0	1_{α}	0
<u> </u>	-0.40	1_{α}	1_{α}	0	1_{α}	0	1_{α}	0	0
	0.40	0	1_{α}	0	0	1_{α}	1_{α}	0	1_{α}

S8.2 Most important determinants in diamond-shaped $[NpO_2]_2^{2+}$.

Orbital occupation													
State	Weight	$1a_{g}$	$2a_{g}$	$3a_g$	$4a_{g}$	$\mathbf{1a}_{\mathrm{u}}$	$\mathbf{2a}_{\mathrm{u}}$	$1 b_{ m u}$	$\mathbf{2b}_{\mathrm{u}}$	${f 3b}_{ m u}$	$4\mathbf{b}_{\mathrm{u}}$	$1\mathbf{b}_{\mathrm{g}}$	$2\mathbf{b}_{\mathrm{g}}$
	-0.45	2	0	1	0	1_{α}	0	2	0	1_{α}	0	1_{α}	0
	-0.43	2	1.	Ő	0	Ő	1.	2	1.	0	0	Ő	1.
$1^{9}A_{g}$	-0.30	2	-0	Ő	Ő	1	-α 1	2	-a 1	1	Ő	Ő	0
	0.30	2	1	1	0	1_{α}	1_{α}	2	1_{α}	Γ_{α}	0	1	1
	-0.30	Z	1_{α}	1_{α}	0	0	0	2	0	0	0	1_{α}	1_{α}
	0.48	2	0	0	0	1	1	2	0	0	0	1	1
	0.43	2	1	1	0	$\frac{1}{\alpha}$	$\frac{1}{\alpha}$	2	1	1	0	$\frac{1}{\alpha}$	$\frac{1}{\alpha}$
$2^5 A_g$	-0.45	2	$\frac{1}{\alpha}$	$\frac{1}{\alpha}$	0	1	1	2	Γ_{α}	Γ_{α}	0	0	0
_	0.31	2	1_{α}	Γ_{α}	0	1_{α}	Γ_{α}	2	0	1	0	0	1
	0.30	2	1_{α}	0	0	1_{α}	0	2	0	1_{α}	0	0	1_{α}
	0.35	2	0	1.	0	1.	0	2	0	0	0	1.	1.
	0.35	2	Ő	$\hat{1}_{\alpha}$	0	$\frac{1}{\alpha}$	1	2	Õ	1	Ő	$\frac{1}{\alpha}$	$\hat{1}_{\alpha}$
	0.35	2	0	0	0	$\frac{1}{\alpha}$	1_{α}	2	1	Γ_{α}	0	Γ_{α}	1
	-0.34	2	1	0	0	Γ_{α}	1_{α}	2	Γ_{α}	0	0	1	1_{α}
$1^5 A_{\mu}$	0.34	2	I_{α}	0	0	0	I_{α}	2	0	0	0	I_{α}	I_{α}
-	-0.33	2	0	1_{α}	0	I_{α}	0	2	I_{α}	I_{α}	0	0	0
	-0.33	2	1_{α}	1_{α}	0	0	0	2	0	1_{α}	0	1_{α}	0
	0.32	2	1_{α}	1_{α}	0	0	0	2	1_{α}	0	0	0	1_{α}
	0.32	2	1_{α}	0	0	0	1_{α}	2	1_{α}	1_{α}	0	0	0
	0.40	n	1	0	0	1	0	0	0	0	0	1	1
	0.40	2	Γ_{α}	0	0	I_{α}	1	2	1	0	0	I_{α}	Γ_{α}
$2^5 A_{\mu}$	-0.40	2	0	0	0	I_{α}	I_{α}	2	I_{α}	0	0	I_{α}	0
u	-0.38	2	I_{α}	0	0	I_{α}	0	2	I_{α}	I_{α}	0	0	0
	0.38	2	1_{α}	1_{α}	0	0	0	2	1_{α}	0	0	1_{α}	0
	0.40	2	1	1	0	1	Ο	2	Ο	0	0	1	0
	0.40	2	1_{α}	Γ_{α}	0	$\frac{1}{\alpha}$	0	2	1	1	0	1_{α}	0
$1^5 B_u$	0.39	2	1	0	0	1_{α}	1	2	1_{α}	Γ_{α}	0	Γ_{α}	0
	-0.39	2	I_{α}	0	0	I_{α}	I_{α}	2	I_{α}	0	0	0	0
	-0.38	2	I_{α}	0	0	0	0	2	1_{α}	0	0	I_{α}	1_{α}
	0.35	2	1.	1.	0	1.	0	2	0	0	0	0	1.
	-0.34	2	$\frac{1}{\alpha}$	$\hat{1}_{\alpha}$	0	$\frac{1}{\alpha}$	1	2	Ő	1	Õ	0	$\hat{1}_{\alpha}$
	0.34	2	1_{α}	1	0	1α 1	$\frac{1}{\alpha}$	2	1	Γ_{α}	0	0	0
	-0.34	2	0	Γ_{α}	0	1_{α}	1_{α}	2	1_{α}	1	0	0	1
$2^5 B_u$	-0.34	2	0	1	0	Γ_{α}	0	2	1_{α}	Γ_{α}	0	1	1_{α}
	0.34	2	0	I_{α}	0	0	0	2	I_{α}	0	0	I_{α}	I_{α}
	0.34	2	I_{α}	1_{α}	0	0	1_{α}	2	0	0	0	I_{α}	0
	-0.34	2	0	0	0	0	1_{α}	2	1_{α}	1_{α}	0	1_{α}	0
	0.34	2	1_{α}	0	0	0	0	2	0	1_{α}	0	1_{α}	1_{α}
	0.25	9	0	1	0	1	1	9	0	0	0	1	0
	0.35	2	1	Γ_{α}	0	1_{α}	1_{α}	2	0	0	0	Γ_{α}	1
	0.55	2	Γ_{α}	0	0	1_{α}	Γ_{α}	2	0	1	0	1	1_{α}
	-0.34	2	0	0	0	I_{α}	0	2	0	I_{α}	0	I_{α}	1_{α}
$1^5 B_{\sigma}$	-0.34	2	0	0	0	0	1_{α}	2	1_{α}	0	0	1_{α}	1_{α}
1 Dg	-0.33	2	1_{α}	1_{α}	0	1_{α}	0	2	0	1_{α}	0	0	0
	0.33	2	0	1_{α}	0	0	0	2	1_{α}	1_{α}	0	1_{α}	0
	0.32	2	1_{α}	0	0	0	0	2	1_{α}	1_{α}	0	0	1_{α}
	-0.32	2	1_{α}	1_{α}	0	0	1_{α}	2	1_{α}	0	0	0	0
	0.40	6	-	0	C	-	1	0	~	0	0	-	0
	0.40	2	1_{α}	0	0	1_{α}	1_{α}	2	0	0	0	1_{α}	0
$2^5 B_r$	0.40	2	0	0	0	1_{α}	0	2	1_{α}	0	0	1_{α}	1_{α}
- - g	0.38	2	1_{α}	1_{α}	0	1_{α}	0	2	1_{α}	0	0	0	0
	0.38	2	1_{α}	0	0	0	0	2	1_{α}	1_{α}	0	1_{α}	0

Table S11: Components of the $[NpO_2]_2^{2+}$ wave functions.

S8.3 Most important determinants in diamond-shaped $[NpO_2]_2^{3+}$.

Table S12: Most important determinants in the wave functions of the diamond-shaped $[NpO_2]_2^{3+}$, their weights and occupation of the active space orbitals.

	Orbital occupation												
State	Weight	$1a_{ m g}$	$\mathbf{2a}_{\mathrm{g}}$	$3\mathbf{a}_{\mathrm{g}}$	$4\mathbf{a}_{\mathrm{g}}$	$1 a_{\mathrm{u}}$	$2\mathbf{a}_{\mathrm{u}}$	$\mathbf{1b}_{\mathrm{u}}$	$\mathbf{2b}_{\mathrm{u}}$	${f 3b}_{ m u}$	${f 4b}_{ m u}$	$\mathbf{1b}_{\mathrm{g}}$	$\mathbf{2b}_{\mathrm{g}}$
	0.54	2	1_{α}	0	0	1_{α}	1_{α}	2	0	0	0	0	0
14Λ	0.53	2	0	0	0	0	1_{α}	2	1_{α}	0	0	1_{α}	0
1 Ag	0.41	2	0	0	0	1_{α}	0	2	0	1_{α}	0	1_{α}	0
	0.39	2	1_{α}	0	0	0	0	2	1_{α}	1_{lpha}	0	0	0
	0.50	2	1_{α}	0	0	0	0	2	1_{α}	1_{α}	0	0	0
94 A	-0.49	2	1_{α}	0	0	0	0	2	0	0	0	1_{α}	1_{lpha}
Z Ag	0.48	2	0	0	0	1_{α}	0	2	1_{α}	0	0	0	1_{α}
	-0.43	2	0	0	0	1_{α}	0	2	0	1_{α}	0	1_{α}	0
	0.50	2	0	1_{α}	0	0	0	2	1_{α}	0	0	1_{α}	0
-1 4 A	-0.50	2	1_{α}	1_{α}	0	1_{α}	0	2	0	0	0	0	0
$1^{-}A_{u}$	0.47	2	0	0	0	1_{α}	0	2	0	0	0	1_{α}	1_{α}
	-0.40	2	1_{α}	0	0	0	0	2	1_{α}	0	0	0	1_{α}
	0.52	2	1_{α}	0	0	0	0	2	1_{α}	0	0	0	1_{α}
24.4	-0.46	2	0	0	0	1_{α}	0	2	1_{α}	1_{α}	0	0	0
$2^{4}A_{u}$	-0.46	2	1_{α}	0	0	0	0	2	0	1	0	1_{α}	0
	0.45	2	0	0	0	1_{α}	0	2	0	0	0	1_{α}	1_{α}
	-0.47	2	0	1_{α}	0	1_{α}	0	2	0	0	0	1_{α}	0
140	0.50	2	0	0	0	1_{α}	1_{α}	2	1_{α}	0	0	0	0
I⁴B _u	-0.49	2	1_{α}	0	0	0	1_{α}	2	0	0	0	1_{α}	0
	0.44	2	1_{α}	1_{α}	0	0	0	2	1_{α}	0	0	0	0
	0.52	2	1_{α}	1_{α}	0	0	0	2	1_{α}	0	0	0	0
04 D	0.49	2	0	1_{α}	0	1_{α}	0	2	0	0	0	1_{α}	0
$2^{\bullet}B_{u}$	-0.44	2	1_{α}	0	0	1_{α}	0	2	0	0	0	0	1_{α}
	-0.44	2	0	0	0	0	0	2	1_{α}	0	0	1_{α}	1_{α}
	0.52	2	0	0	0	1_{α}	1_{α}	2	0	0	0	1_{α}	0
140	0.47	2	1_{α}	0	0	0	1_{α}	2	1_{α}	0	0	0	0
I⁼Bg	0.46	2	1_{α}	1_{α}	0	0	0	2	0	0	0	1_{α}	0
	0.45	2	0	1_{α}	0	1_{α}	0	2	1_{α}	0	0	0	0
	0.57	2	1_{α}	0	0	0	1_{α}	2	1_{α}	0	0	0	0
94D	-0.50	2	0	0	0	1_{α}	1_{α}	2	0	0	0	1_{α}	0
∠-Bg	-0.40	2	0	0	0	0	0	2	1_{α}	1_{α}	0	1_{α}	0
	0.40	2	1_{α}	0	0	1_{α}	0	2	0	1_{α}	0	0	0

S9 CASSCF+DKH2 wavefunctions

S9.1 Most important determinants in T-shaped $[NpO_2]_2^{2+}$.

				Orb	oital o	ccupa	tion		
State	Weight	$1a_1$	$2a_1$	$1\mathbf{b}_2$	$\mathbf{2b}_2$	$1\mathbf{b}_1$	$\mathbf{2b}_1$	$1a_2$	$\mathbf{2a}_2$
	0.49177	1	1	0	0	1.	1.	0	0
-	-0 50810	$-\alpha$	$-\alpha$	1.	1.	- <u>a</u> 0	$-\alpha$	1.	1.
$1^{5}A_{1}$	0.48693	Õ	1	$\frac{1}{\alpha}$	$\hat{1}^{\alpha}$	0	1	1α	$\frac{1}{\alpha}$
	0.40000	1	1_{α}	1_{α}	1	1	1_{α}	1	1_{α}
	0.50518	1_{α}	0	0	1_{α}	1_{α}	0	1_{α}	0
	0.20204	1	1	1	1	0	0	0	0
	0.39284	\mathbf{L}_{α}	Γ_{α}	I_{α}	Γ_{α}	0	1	1	0
$2^5 A_1$	-0.58226	I_{α}	0	I_{α}	0	0	I_{α}	I_{α}	0
1	0.38898	0	1_{α}	0	1_{α}	1_{α}	0	0	1_{α}
	0.58794	0	0	0	0	1_{α}	1_{α}	1_{α}	1_{α}
	0.57365	1_{α}	1_{α}	0	0	0	0	1_{α}	1_{α}
95 A	0.40922	0	0	1_{α}	1_{α}	1_{α}	1_{α}	0	0
$3^{\circ}A_1$	0.39689	0	1_{α}	1_{α}	0	1_{α}	0	1_{α}	0
	-0.57978	1_{α}	0	0	1_{α}	0	1_{α}	0	1_{α}
		a			a		a		a
	0.50808	1.	1.	0	0	1.	1.	0	0
_	0 49176	-a 0	-a 0	1	1	- <u>u</u> 0	- <u>u</u> 0	1	1
$4^{5}A_{1}$	0.50311	0	1	1α 1	$\frac{1}{\alpha}$	0	1	$\frac{1}{\alpha}$	$\frac{1}{\alpha}$
	0.30311	1	Γ_{α}	Γ_{α}	1	1	Γ_{α}	1	Γ_{α}
	-0.46704	1_{α}	0	0	Γ_{α}	1_{α}	0	Γ_{α}	0
	0 40445	0	1	1	0	0	0	1	1
	0.49440	1	Γ_{α}	1_{α}	1	1	1	Γ_{α}	1_{α}
$1^{5}B_{2}$	-0.30338	1_{α}	1	0	Γ_{α}	Γ_{α}	Γ_{α}	1	0
	0.49311	I_{α}	I_{α}	0	0	I_{α}	0	I_{α}	0
	0.50674	0	0	1_{α}	1_{α}	0	1_{α}	0	1_{α}
	0 20594	0	1	1	0	1	1	0	0
	0.39384	1	Γ_{α}	Γ_{α}	1	Γ_{α}	Γ_{α}	1	1
$2^{5}B_{2}$	0.59078	I_{α}	0	0	Γ_{α}	0	0	I_{α}	I_{α}
-	0.57180	I_{α}	I_{α}	0	0	0	I_{α}	0	1_{α}
	-0.40886	0	0	1_{α}	1_{α}	1_{α}	0	1_{α}	0
	0 40917	0	1	1	0	0	0	1	1
	0.49317	1	Γ_{α}	Γ_{α}	1	1	1	Γ_{α}	Γ_{α}
3^5B_2	0.50677	1_{α}	0	0	I_{α}	I_{α}	I_{α}	0	0
- 2	-0.49441	1_{α}	1_{α}	0	0	1_{α}	0	1_{α}	0
	0.50531	0	0	1_{α}	1_{α}	0	1_{α}	0	1_{α}
	0 50669	0	1	1	0	0	0	1	1
	0.50668	0	I_{α}	I_{α}	0	0	0	Γ_{α}	I_{α}
4^5B_2	0.49309	I_{α}	0	0	I_{α}	I_{α}	I_{α}	0	0
2	0.50540	1_{α}	1_{α}	0	0	1_{α}	0	1_{α}	0
	-0.49450	0	0	1_{α}	1_{α}	0	1_{α}	0	1_{α}
	O FORFR	1	0	1	1	0	1	0	0
	0.50656	I_{α}	1	I_{α}	1_{α}	U	I_{α}	1	0
1^5B_1	0.48722	I_{α}	1_{α}	I_{α}	0	0	0	1_{α}	0
. T	-0.49336	0	1_{α}	0	0	1_{α}	0	1_{α}	1_{α}
	0.50017	0	0	0	1_{α}	1_{α}	1_{α}	0	1_{α}

Table S13: Components of the wave function of the T-shaped $[NpO_2]_2^{2+}$ molecule. Orbital occupation

				Orb	oital o	ссира	tion		
State	Weight	$\mathbf{1a}_1$	$\mathbf{2a}_1$	$1b_2$	$\mathbf{2b}_2$	$1b_1$	$\mathbf{2b}_1$	$\mathbf{1a}_2$	$\mathbf{2a}_2$
	-0.31250	0	1_{α}	1_{α}	1_{α}	1_{α}	0	0	0
2^5B_1	0.44855	1_{α}	1_{α}	0	1_{α}	0	0	0	1_{α}
- D ₁	0.68759	1_{α}	0	0	0	0	1_{α}	1_{α}	1_{α}
	0.46657	0	0	1_{α}	0	1_{α}	1_{α}	1_{α}	0
	-0.49044	1_{α}	1_{α}	1_{lpha}	0	0	1_{α}	0	0
$1^5 A_0$	0.50938	1_{α}	0	1_{α}	1_{α}	0	0	1_{α}	0
1 112	0.50938	0	0	0	1_{α}	1_{α}	0	1_{α}	1_{α}
	0.49044	0	1_{α}	0	0	1_{α}	1_{α}	0	1_{α}
	0.38994	1_{α}	1_{α}	0	1_{α}	1_{α}	0	0	0
$2^5 A_2$	-0.38994	0	1_{α}	1_{α}	1_{α}	0	0	0	1_{α}
	0.58987	0	0	1_{α}	0	0	1_{α}	1_{α}	1_{α}
	0.58987	1_{α}	0	0	0	I_{α}	I_{α}	1_{α}	0
	-0.34663	1_{α}	1_{eta}	0	0	1_{α}	1_{α}	0	0
$1^{3}A_{1}$	0.36026	0	0	1_{α}	1_{β}	0	0	1_{α}	1_{α}
Ŧ	0.34667	0	I_{α}	I_{β}	0	0	I_{α}	0	I_{α}
	-0.36024	1_{α}	0	0	1_{β}	1_{α}	0	1_{α}	0
	-0.48160	1_{lpha}	0	1_{lpha}	0	0	1_{eta}	1_{α}	0
$2^{3}A_{1}$	0.34072	1_{α}	0	1_{α}	0	0	1_{α}	1_{β}	0
1	-0.41710	0	0	0	0	l_{α}	l_{β}	I_{α}	I_{α}
	0.34057	0	0	0	0	1_{α}	1_{α}	1_{α}	1_{β}
	0.34985	0	1_{α}	1_{eta}	0	0	0	1_{α}	1_{α}
$1^{3}B_{2}$	0.35716	1_{α}	0	0	1_{β}	1_{α}	1_{α}	0	0
2	-0.34980	1_{α}	1_{β}	0	0	1_{α}	0	1_{α}	0
	-0.35717	0	0	1_{α}	1_{β}	0	1_{α}	0	I_{α}
	-0.41919	1_{α}	0	0	1_{eta}	0	0	1_{α}	1_{α}
$2^{3}B_{2}$	-0.40454	1_{α}	1_{β}	0	0	0	1_{α}	0	1_{α}
2	0.34228	1_{α}	0	0	1_{α}	0	0	1_{α}	1_{β}
	0.33033	1_{α}	I_{α}	0	0	0	I_{α}	0	1_{β}
	0.41351	1_{α}	0	1_{lpha}	1_{β}	0	1_{α}	0	0
$1^{3}B_{1}$	-0.33192	1_{α}	1_{β}	1_{α}	0	0	0	1_{α}	0
1	-0.34887	0	I_{α}	0	0	l_{β}	0	I_{α}	I_{α}
	0.34063	0	0	0	1_{α}	1_{β}	1_{α}	0	1_{α}
	0.30537	1_{α}	1_{β}	0	1_{α}	0	0	0	1_{α}
$2^{3}B_{1}$	0.48617	l_{α}	0	0	0	0	l_{β}	I_{α}	I_{α}
	-0.32158	Γ_{α}	0	1	0	1	I_{α}	I_{α}	1_{β}
	-0.30705	0	0	1_{α}	0	1_{α}	1_{β}	1_{α}	0
	0.34664	1_{α}	1_{β}	1_{α}	0	0	1_{α}	0	0
1^3A_2	0.41596	1_{α}	0	1_{α}	1_{β}	0	0	1_{α}	0
2	0.36025	0	0	0	1_{α}	1_{β}	0	1_{α}	1_{α}
	0.34668	0	1_{α}	0	0	1_{β}	1_{α}	0	1_{α}
	0.41710	0	0	1_{α}	0	0	1_{β}	1_{α}	1_{α}
$2^{3}A_{2}$	-0.34057	0	0	1_{α}	0	0	1_{α}	1_{α}	1_{β}
-2	-0.48160	l_{α}	0	0	0	l_{α}	1_{β}	l_{α}	0
	0.34072	1_{α}	0	0	0	1_{α}	1_{α}	1_{β}	0

S9.2 Diamond-shaped $[NpO_2]_2^{2+}$ - CAS(8,12)SCF.

					Oi	rbital	occup	ation					
State	Weight	$1 a_{ m g}$	$\mathbf{2a}_{\mathrm{g}}$	$3 a_{ m g}$	$4 a_{ m g}$	$\mathbf{1a}_{\mathrm{u}}$	$\mathbf{2a}_{\mathrm{u}}$	$1 \mathrm{b_u}$	$\mathbf{2b}_{\mathrm{u}}$	${f 3b}_{ m u}$	$4 b_u$	$1 b_g$	$\mathbf{2b}_{\mathrm{g}}$
	0.53801	2	1.	0	0	1.	0	2	1.	0	0	0	1
$1^{9}A_{g}$	0 42115	2	-4	1	Ő	-a 0	1	2	$-\alpha$	1	Ő	1	-α 0
	0.42110	2	0	1_{α}	0	0	1_{α}	2	0	1_{α}	0	1_{α}	0
	0 4 47 99	0	1	1	0	0	0	0	1	1	0	0	0
$2^5 A_a$	-0.44722	2	I_{α}	I_{α}	0	0	0	2	I_{α}	I_{α}	0	0	0
g	0.51232	2	0	0	0	1_{α}	1_{α}	2	0	0	0	1_{α}	1_{α}
	-0.33321	2	1_{α}	0	0	1_{α}	0	2	1_{α}	1_{α}	0	0	0
	-0.35649	2	1_{α}	0	0	1_{α}	0	2	0	0	0	1_{α}	1_{α}
	-0.32388	2	0 0	1.	0	0 0	1	2	1	1	0	ñ	ñ
	0.34650	2	0	1 1	0	0	1α 1	2	$\frac{1}{\alpha}$	$\frac{1}{\alpha}$	0	1	1
$1^5 A_u$	-0.34030	2	1	1_{α}	0	0	Γ_{α}	2	0	1	0	1_{α}	Γ_{α}
	-0.32486	2	I_{α}	I_{α}	0	0	0	2	0	I_{α}	0	I_{α}	0
	-0.33227	2	1_{α}	1_{α}	0	0	0	2	1_{α}	0	0	0	1_{α}
	0.34749	2	0	0	0	1_{α}	1_{α}	2	0	1_{α}	0	1_{α}	0
	0.35543	2	0	0	0	1_{α}	1_{α}	2	1_{α}	0	0	0	1_{α}
	-0 38758	2	0	1	0	1	0	2	1	1	0	0	0
	0.41499	2	0	1 α	0	1α 1	0	2	Γ_{α}	Γ_{α}	0	1	1
$2^5 A_u$	-0.41482	2	0	1_{α}	0	Γ_{α}	0	2	0	0	0	Γ_{α}	1_{α}
a	-0.38444	2	I_{α}	1_{α}	0	0	0	2	0	1_{α}	0	0	1_{α}
	0.41132	2	0	0	0	1_{α}	1_{α}	2	0	1_{α}	0	0	1_{α}
	-0.39955	2	0	1_{α}	0	1_{α}	1_{α}	2	0	1_{α}	0	0	0
	0.40591	2	1.	1.	0	1.	Õ	2	0	0 0	0	0	1.
15B	0.30616	2	$\hat{\mathbf{u}}_{\alpha}$	±α 1	0	$\frac{1}{\alpha}$	Ő	2	0	1	0	1	1 1
$1 D_u$	-0.39010	2	0	Γ_{α}	0	1	0	2	1	1_{α}	0	Γ_{α}	1_{α}
	-0.40251	2	0	0	0	1_{α}	0	2	1_{α}	1_{α}	0	0	1_{α}
	0.33963	2	1_{α}	0	0	1_{α}	1_{α}	2	0	1_{α}	0	0	0
	-0.34443	2	0	1_{α}	0	1_{α}	1_{α}	2	1_{α}	0	0	0	0
	-0.34547	2	1.	1	0	1	0	2	0	0	0	1.	0
	0 33820	2	-α 1	-α 1	Õ	-α 0	1	2	Õ	Õ	Õ	-α 0	1
$2^5 B_u$	0.00020	2	$\frac{1}{\alpha}$	1_{α}	0	0	1_{α}	2	0	1	0	1	1_{α}
	-0.33782	2	Γ_{α}	1	0	0	0	2	1	Γ_{α}	0	Γ_{α}	1_{α}
	0.34010	2	0	1_{α}	0	0	0	2	1_{α}	0	0	1_{α}	1_{α}
	-0.34087	2	0	0	0	1_{α}	0	2	1_{α}	1_{α}	0	1_{α}	0
	0.33687	2	0	0	0	0	1_{α}	2	1_{α}	1_{α}	0	0	1_{α}
	0.33576	2	1.	1.	0	1.	0	2	1.	0	0	0	0
	0 32/38	2	-α 1	-α 1	Ő	-α 0	1	2	-α 0	1	Õ	Õ	Õ
	0.02400	2	1 1	Γ_{α}	0	1	1α 1	2	0	Γ_{α}	0	0	1
	0.55042	2	I_{α}	0	0	1_{α}	1_{α}	2	0	0	0	0	1_{α}
$1^{5}B_{-}$	0.35038	2	0	1_{α}	0	I_{α}	1_{α}	2	0	0	0	1_{α}	0
1 Dg	0.35464	2	0	0	0	1_{α}	0	2	1_{α}	0	0	1_{α}	1_{α}
	0.34308	2	0	0	0	0	1_{α}	2	0	1_{α}	0	1_{α}	1_{α}
	-0.32906	2	1_{α}	0	0	0	0	2	1_{α}	1_{α}	0	0	1_{α}
	-0.32307	2	0	1.	0	0	0	2	1	1	0	1.	0
	0.0200.	-	Ũ	$-\alpha$	0	Ŭ	Ŭ	-	$-\alpha$	-α	0	$-\alpha$	Ũ
	0 30005	ი	1	1	0	1	Ο	0	0	1	0	0	Δ
	-0.38823	2	I_{α}	1_{α}	0	1_{α}	0	2	0	Γ_{α}	0	0	0
$2^5 B_{-}$	-0.41604	2	0	1_{α}	0	I_{α}	1_{α}	2	0	0	0	0	1_{α}
- D g	-0.41007	2	0	0	0	1_{α}	0	2	0	1_{α}	0	1_{α}	1_{α}
	0.38378	2	0	1_{α}	0	0	0	2	1_{α}	1_{α}	0	0	1_{α}
	0.20535	2	1.	1.	0	2	0	2	0	0	0	0	0
	0.20000	2	$\frac{1}{\alpha}$	+α 9	0	1	1	2	0	0	0	0	0
	-0.20133	4	0	4	0	$\frac{1}{\alpha}$	Γ_{α}	4	1	1	0	0	0
	-0.20366	2	0	U	U	2	0	2	1_{α}	1_{α}	U	U	0
$1^3 A$	-0.20063	2	1_{α}	1_{α}	0	0	0	2	0	0	0	0	2
- - - - g	0.24627	2	1_{α}	0	0	1_{α}	0	2	0	1_{β}	0	0	1_{α}
	0.23127	2	0	1_{α}	0	1_{α}	0	2	0	1_{α}	0	1_{β}	0
	-0.24861	2	0	1.	0	1	0	2	1_{R}	0	0	0	1_{α}
	-0 22786	2	Õ	1	Õ	n	1	2	0 0	1	0	0	1.
		-	~	$+\alpha$	0	~	$+\alpha$	-	0	$-\alpha$	0	0	-p

Table S14: Structure of the calculated states of the diamond-shaped $[NpO_2]_2^{2+}$ cluster. Orbital occupation

					O	rbital	occup	ation					
State	Weight	$1 a_{ m g}$	$\mathbf{2a}_{\mathrm{g}}$	$\mathbf{3a}_{\mathrm{g}}$	$4 a_{ m g}$	$1 a_{\mathrm{u}}$	$2\mathbf{a}_{\mathrm{u}}$	$1 b_{\mathrm{u}}$	$2b_{\mathrm{u}}$	$\mathbf{3b}_{\mathrm{u}}$	$4 b_{\mathrm{u}}$	$1 b_{ m g}$	$\mathbf{2b}_{\mathrm{g}}$
	-0.28038	2	1_{α}	1_{α}	0	1_{β}	1_{α}	2	0	0	0	0	0
	0.24104	2	1_{α}	0	0	1_{β}	0	2	0	1_{α}	0	1_{α}	0
	-0.24384	2	0	1_{α}	0	1_{β}	0	2	1_{α}	0	0	1_{α}	0
03.4	-0.23759	2	1_{α}	0	0	Ó	1_{β}	2	0	1_{α}	0	0	1_{α}
$2^{\circ}A_{g}$	0.23969	2	0	1_{α}	0	0	1_{B}	2	1_{α}	0	0	0	1_{α}
	0.27795	2	1.	1	0	0	Ő	2	Õ	0	0	18	1.
	0.27806	2	- <i>a</i> 0	-α 0	Õ	1	1	2	1.	1	Õ	-p 0	$-\alpha$
	0.27584	2	0	0	0	$0^{1\alpha}$	$0^{1\alpha}$	$\frac{2}{2}$	1_{α}^{ρ}	$1_{\alpha}^{1_{\alpha}}$	0	1_{β}	1_{α}
	0 10100	2	1	0	0	4	0	0			0	,	0
	-0.19186	2	I_{α}	0	0	I_{α}	0	2	I_{α}	1_{β}	0	0	0
	0.21832	2	I_{α}	0	0	I_{α}	0	2	0	0	0	1_{β}	I_{α}
9 .	0.19768	2	0	1_{α}	0	0	1_{α}	2	1_{β}	1_{α}	0	0	0
$1^{3}A_{u}$	-0.19971	2	0	1_{α}	0	0	1_{α}	2	0	0	0	1_{α}	1_{β}
	0.19133	2	1_{α}	1_{α}	0	0	0	2	1_{α}	0	0	0	1_{β}
	0.21325	2	0	0	0	1_{α}	1_{α}	2	0	1_{eta}	0	1_{α}	0
	0.21720	2	0	0	0	1_{α}	1_{α}	2	1_{eta}	0	0	0	1_{α}
	0.20998	2	0	1_{α}	0	2	1_{α}	2	0	0	0	0	0
	0.20732	2	0	0	0	2	Ő	2	0	1.	0	1.	0
	-0 23663	$\frac{1}{2}$	Ő	1.	Ő	1.	Ő	$\frac{1}{2}$	1.	-α 1.	Ő	-a 0	Ő
$2^{3} \Delta$	-0.25415	2	Ő	$\frac{1}{\alpha}$	Ő	$\frac{1}{\alpha}$	Ő	2	0	$\hat{1}^{\alpha}$	Õ	1.	1
2 1 1 u	0.20410	2	0	1_{α}	0	1_{α}	1	2	0	0	0	13	$\frac{1}{\alpha}$
	0.20009	2	1	1_{α}	0	0	1_{α}	2	0	1	0	0	1
	-0.22100	2	Γ_{α}	Γ_{α}	0	1	1	2	0	1_{α}	0	0	1β 1
	-0.23102	2	0	0	0	1_{α}	1_{α}	Ζ	0	1_{β}	0	0	1_{α}
	0.27332	2	1_{α}	0	0	2	0	2	1_{lpha}	0	0	0	0
	0.21098	2	0	1_{α}	0	0	2	2	0	1_{α}	0	0	0
	-0.27035	2	2	0	0	1_{α}	0	2	0	0	0	0	1_{α}
13D	-0.21319	2	0	2	0	0	1_{α}	2	0	0	0	1_{α}	0
$1^{\circ}B_{u}$	0.26702	2	1_{α}	0	0	0	0	2	1_{α}	0	0	0	2
	0.21083	2	0	1_{α}	0	0	0	2	0	1_{α}	0	2	0
	-0.26964	2	0	0	0	1.	0	2	2	Ő	0	0	1.
	-0.20871	2	0	0	0	0	1_{α}	2	0	2	0	1_{α}	$0^{-\alpha}$
	0 22450	ე	ე	1	0	0	0	ე	0	1	0	0	0
	-0.22450	2	ے 1	1_{α}	0	0	0	2	1	1_{α}	0	0	0
	0.22003	2	Γ_{α}	2	0	0	1	2	Γ_{α}	0	0	1	0
	-0.25976	2	0	0	0	2	I_{α}	2	0	0	0	I_{α}	1
$2^{3}B_{u}$	0.25669	2	0	0	0	I_{α}	2	2	0	0	0	0	I_{α}
u	0.22191	2	I_{α}	0	0	0	0	2	I_{α}	2	0	0	0
	-0.22395	2	0	1_{α}	0	0	0	2	2	1_{α}	0	0	0
	-0.25660	2	0	0	0	1_{α}	0	2	0	0	0	2	1_{α}
	0.25384	2	0	0	0	0	1_{α}	2	0	0	0	1_{α}	2
	-0.20556	2	1_{α}	1_{α}	0	1_{β}	0	2	1_{α}	0	0	0	0
4 ³ D	-0.24739	2	0	1_{α}	0	1_{β}	1_{α}	2	0	0	0	1_{α}	0
$1^{\circ}\mathrm{B}_{g}$	0.21867	2	1.	0	0	1	18	2	0	0	0	0	1.
	0.21702	2	0	0	0	1_{α}	0	2	1_{α}	0	0	1_{β}	1_{α}
	0 22756	ე	1	1	0	1	0	ი	0	1	Ο	Ο	0
	-0.20100	2 0	Γ_{α}	Γ_{α}	0	⊥ _β ດ	1	⊿ 0	0	$\frac{1}{\alpha}$	0	0	0
	0.20774	Z	U	1	U	Z	1_{α}	Z	U	1_{α}	U	1	0
	-0.20959	2	U	I_{α}	U	2	0	2	U	U	0	\mathbf{I}_{α}	0
$2^{3}B_{c}$	0.25368	2	0	I_{α}	0	1_{α}	1_{β}	2	0	0	0	0	I_{α}
g	0.25124	2	0	0	0	1_{α}	0	2	0	1_{α}	0	1_{β}	1_{α}
	-0.20312	2	0	0	0	0	1_{α}	2	0	1_{α}	0	0	2
	-0.22165	2	0	1_{α}	0	0	0	2	1_{α}	1_{α}	0	0	1_{β}
	-0.20567	2	0	1_{α}	0	0	0	2	0	0	0	1_{α}	2

S9.3 Diamond-shaped $[NpO_2]_2^{2+}$ - CAS(4,8)SCF.

Table S15: Composition of the wave functions of the diamond-shaped $[NpO_2]_2^{2+}$ complex.

	Orbital of	occup	ation						
State	Weight	$2a_{g}$	$\mathbf{3a}_{g}$	$1a_{u}$	$2a_{\mu}$	$\mathbf{2b}_{\mathrm{u}}$	$\mathbf{3b}_{\mathrm{u}}$	$1\mathbf{b}_{g}$	$2\mathbf{b}_{\mathbf{g}}$
45.4	0.56202	1_{α}	0	1_{α}	0	1_{α}	0	0	1.
$1^{9}A_{g}$	0.43186	0	1_{α}	0	1_{α}	0	1_{α}	1_{α}	0
_	0.46257	1.	1.	0	0	1.	1.	0	0
$2^5 \mathbf{A}_g$	-0.53162	1_{α}	1^{α}	1.	1.	1_{α}	1_{α}	1	1.
	0.0010	Ũ	Ŭ	-α	-α	Ŭ	Ũ	-α	-α
	0.34545	1_{α}	0	1_{α}	0	1_{α}	1_{α}	0	0
	0.37010	1_{α}	0	1_{α}	0	0	0	1_{α}	1_{α}
	0.33588	0	1_{α}	0	1_{α}	1_{α}	1_{α}	0	0
1 ⁵ A.,	0.35984	0	1_{α}	0	1_{α}	0	0	1_{α}	1_{α}
<i>u</i>	0.33681	1_{α}	1_{α}	0	0	0	1_{α}	1_{α}	0
	0.34450	I_{α}	I_{α}	0	0	I_{α}	0	0	I_{α}
	-0.36085	0	0	I_{α}	I_{α}	0	I_{α}	I_{α}	1
	-0.36908	0	0	1_{α}	I_{α}	1_{α}	0	0	I_{α}
	0.40367	0	1_{α}	1_{α}	0	1_{α}	1_{α}	0	0
<u>95 л</u>	0.43264	0	1_{α}	1_{α}	0	0	0	1_{α}	1_{α}
$\angle A_u$	0.40067	1_{α}	1_{α}	0	0	0	1_{α}	0	1_{α}
	-0.42937	0	0	1_{α}	1_{α}	0	1_{α}	0	1_{α}
	-0.41653	0	1_{α}	1_{α}	1_{α}	0	1_{α}	0	0
450	0.42302	1_{α}	1_{α}	1_{α}	$0^{-\alpha}$	0	$0^{-\alpha}$	Õ	1.0
$I^{3}B_{u}$	-0.41335	0	1_{α}^{α}	0	0	0	1_{α}	1_{α}	1_{α}
	-0.41994	0	0	1_{α}	0	1_{α}	1_{α}	0	1_{α}
	0 35967	1	0	1	1	0	1	0	0
	0.35207 0.35707	Γ_{α}	1	1_{α}	1_{α}	1	1_{α}	0	0
	-0.35805	1	1_{α}	$\frac{1}{\alpha}$	1_{α}	1_{α}	0	1	0
_	-0.35000	$\frac{1}{\alpha}$	1_{α}	1_{α}	1	0	0	1_{α}	1
$2^5 B_u$	-0.35087	1_{α}	1^{α}	0	1_{α}	0	1.	1.	1_{α}
	0.35320	$\frac{1}{\alpha}$	1.	0	0	1.	1α	1_{α}	$\frac{1}{\alpha}$
	-0.35400	0	$0^{-\alpha}$	1.	0	1_{α}	1	1_{α}	$0^{-\alpha}$
	0.35002	0	0	$0^{-\alpha}$	1_{α}	1_{α}	1_{α}	$0^{-\alpha}$	1_{α}
	0.94707	1	1	1	0	1	0	0	0
	0.34787	I_{α}	I_{α}	I_{α}	1	Γ_{α}	1	0	0
	0.33042 0.37008	1_{α}	Γ_{α}	1	1_{α}	0	Γ_{α}	0	1
	0.37008	Γ_{α}	1	1_{α}	1_{α}	0	0	1	1_{α}
$1^5 B_g$	0.30339	0	1_{α}	1_{α}	Γ_{α}	1	0	1_{α}	1
	0.30050 0.35667	0	0	1_{α}	1	1_{α}	1	1_{α}	$\frac{1}{\alpha}$
	-0.34157	1.	0	0	$\frac{1}{\alpha}$	1	1_{α}	1^{α}	1_{α}
	-0.33519	$0^{-\alpha}$	1_{α}	0	0	1_{α}	1_{α}	1_{α}	$0^{-\alpha}$
	0.40400				0	0		0	0
	0.40429	I_{α}	I_{α}	I_{α}	0	0	I_{α}	0	0
$2^5 B_a$	0.43379	0	I_{α}	I_{α}	I_{α}	0	1	0	I_{α}
Э	0.42809	0	1	Γ_{α}	0	1	\perp_{α}	Γ_{α}	I_{α}
	-0.40009	U	1_{α}	U	U	1_{α}	1_{α}	U	1_{α}
	0.21384	1_{α}	1_{α}	2	0	0	0	0	0
1^3 A	-0.20972	0	2	1_{α}	1_{α}	0	0	0	0
- g	-0.20820	0	2	0	0	0	0	1_{α}	1_{α}
	-0.21234	0	0	2	0	1_{α}	1_{α}	0	0

	Orbital o	occupa	ation						
State	Weight	$2a_{ m g}$	$3 a_{ m g}$	$\mathbf{1a}_{\mathrm{u}}$	$\mathbf{2a}_{\mathrm{u}}$	$\mathbf{2b}_{\mathrm{u}}$	${f 3b}_{ m u}$	$\mathbf{1b}_{\mathrm{g}}$	$\mathbf{2b}_{\mathrm{g}}$
	0.29071	1_{α}	1_{α}	1_{β}	1_{α}	0	0	0	0
	-0.20570	1_{α}	1_{α}	1_{α}	1_{β}	0	0	0	0
	-0.25024	1_{α}	0	1_{β}	Ó	0	1_{α}	1_{α}	0
	0.25292	0	1_{α}	1_{β}	0	1_{α}	0	1_{α}	0
	0.24689	1_{α}	0	0	1_{β}	0	1_{α}	0	1_{α}
- 9 .	-0.24894	0	1.	0	18	1.	Ő	0	1
$2^{3}A_{g}$	0.272260	Ő	-α 1	Õ	1.	-α 1	Õ	Õ	-α 1
	0.20415	1.	-α 1.	Ő	$-\alpha$	0	Ő	1.	$\frac{1}{\alpha}$
	-0.28870	$\frac{1}{\alpha}$	1α	1	1	1.	1	$\frac{1}{\alpha}$	0
	0.20010	0	0	1_{α}	1_{α}	1	1_{α}	0	0
	0.20410 0.20451	1	0	1_{α}	1_{α}	1_{α}	1β 1	1.	0
	-0.20451	Γ_{α}	1	1_{α}	0	1	Γ_{α}	1β	0
	0.20035	0	1_{α}	1_{α}	0	1_{α}	0	1_{β}	0
	0.18769	1.	0	2	1.	0	0	0	0
	0.18164	$\frac{1}{\alpha}$	1	1	$\frac{1}{2}$	0	0	0	0
$1^{3}A_{u}$	0.16104 0.16870	0	$\frac{1}{\alpha}$	1_{α}	0	1	0	1	0
	0.10610	0	0	0	0	$\frac{1}{\alpha}$	0	$\frac{1}{\alpha}$	0
	0.10010	0	0	2	0	1_{α}	0	1_{α}	0
	0.20397	1.	2	1.	0	0	0	0	0
	0.20001	$\frac{1}{\alpha}$	1	$\frac{1}{2}$	1	0	0	0	0
$2^{3}A_{u}$	0.21000	0	$\frac{1}{\alpha}$	0	1_{α}	1	0	0	1
	0.20134 0.21620	0	0	0	0	Γ_{α}	1	1	Γ_{α}
	0.21029	0	0	Z	0	0	1_{α}	1_{α}	0
	-0.28578	1.	0	2	0	1	0	0	0
	-0.20223	- <i>α</i> 1.	Õ	1.	1.	0	1	Õ	Ő
$1^{3}B_{u}$	-0.21687	$\frac{1}{\alpha}$	1	1α	2	0	$\frac{1}{\alpha}$	0	0
	0.221007	2	1_{α}	1	0	0	1_{α}	0	1
	0.20200	0	0	1_{α}	1	0	0	1	Γ_{α}
	0.21091	0	4	0	1_{α}	0	0	1_{α}	0
	-0 23263	2	1.	0	0	0	1.	0	0
	0.23265	1	$\frac{1}{\alpha}$	0	0	1	1_{α}	0	0
	0.25405 0.20555	1_{α}	1	1.	0	Γ_{α}	0	1	0
93D	0.20000	1_{α}	1_{α}	1B 9	1	0	0	1_{α}	0
$_{2}$ D _u	-0.20909 0.90990	1	1	4 0	$\frac{1}{\alpha}$	0	0	Γ_{α}	1
	-0.20000 0.96600	Γ_{α}	Γ_{α}	1	1β 0	0	0	0	$\frac{1}{\alpha}$
	0.20099	1	U	Γ_{α}		1	0	U	Γ_{α}
	0.23017	I_{α}	0	0	0	1_{α}	Ζ	0	0
	0 21208	1	1	1	0	1	0	Ο	0
	0.21298	1_{α}	1_{α}	13	1	Γ_{α}	1	0	0
$1^{3}\mathrm{B}_{g}$	0.20394	Γ_{α}	1_{α}	1	1β 1	0	Γ_{α}	1	0
5	0.25070	1	Γ_{α}	1_{β}	I_{α}	0	0	1_{α}	1
	-0.22706	1_{α}	0	1_{α}	1_{β}	0	0	0	1_{α}
	0 20201	Ο	n	1	Ο	1	0	Ο	Ο
	0.20301	1	2 1	$^{\perp}\alpha$	0	Γ_{α}	1	0	0
	0.24/38	Γ_{α}	\mathbf{L}_{α}	1_{β}	1	U	Γ_{α}	U	U
0 ³ D	-0.21671	0	0	2	I_{α}	0	\mathbf{I}_{α}	0	0
$2^{\circ}B_{g}$	0.276700	0	I_{α}	I_{α}	0	I_{α}	0	1_{α}	0
	0.21849	0	1_{α}	2	0	0	0	1_{α}	0
	0.20196	1_{α}	0	1_{β}	1_{α}	0	0	1_{α}	0
	-0.26468	0	1_{α}	1_{α}	1_{β}	0	0	0	1_{α}

S10 DMRG mutual information measurements

S10.1 Diamond-shaped $[NpO_2]_2^{3+}$

Figure S7: Orbital-pair correlations of the diamond-shaped $[NpO_2]_2^{3+}$. The values of the single-orbital entropy are coded by the size of the dots corresponding to each orbital. The strongest correlated orbitals are connected by blue lines $(I_{i|j} > 10^{-1})$, followed by orbital-pair correlations marked by red lines $(10^{-1} > I_{i|j} > 10^{-2})$.

For diamond-shaped $[NpO_2]_2^{3+}$, 14 occupied orbitals (4 in a_g and in b_u , 3 in a_u and in b_g) and 20 virtual orbitals (6 in a_g and in b_u , 4 in a_u and in b_g) were added to the CASSCF active space (4 in a_g and in b_u , 2 in a_u and in b_g) resulting in a total of 46 molecular orbitals and 35 electrons.

S10.2 Mutual information measurements

Figure S8: Decaying values of the mutual information (a) for the T-shaped $[NpO_2]_2^{2+}$ (first twelve blue points correspond to the strong correlation between δ_{u^-} and ϕ_u -type orbitals), (b) for the diamond-shaped $[NpO_2]_2^{2+}$ (the first two blue points correspond to the strong correlation between σ_{g^-} and $\sigma_{g^-}^*$ -type orbitals, while the orbital-pair correlation between ϕ_{u^-} and δ_u -type orbitals are marked by next thirteen points), (c) for the diamond-shaped $[NpO_2]_2^{3+}$ (the first blue point corresponds to the strong correlation between orbitals 4 and 11).

S11 Excited states

S11.1 T-shaped cluster in CAS(4,8) calculations

S11.1.1 Spin-free (CASSCF and CASPT2) states in models with explicit water molecules

Table S16: Energetics of the T-shaped $[NpO_2]_2^{2+}$ molecule calculated with CAS(4,8)SCF and CAS(4,8)PT2, using the second-order Douglass-Kroll-Hess Hamiltonian. The geometry of the cluster comes from DFT (BP86) calculations with explicit H₂O molecules and COSMO solvation model. No constraints on symmetry were imposed. For each molecule, the energy differences are calculated with respect to the lowest lying state and are given in cm⁻¹. The first column contains labels assigned to the states.

	Geometry a				Geometry b	
	$[NpO_2]_2^{2+} + 9H$	I ₂ O	$[NpO_2]_2^{2+} + 5E$	I ₂ O		
	CASSCF(4,8)	CAS(4,8)PT2	CAS(4,8)SCF	CAS(4,8)PT2	CASSCF(4,8)	CAS(4,8)PT2
$1^{5}A$	0	0	0	0	0	0
$2^5 A$	5	14	0	1	0	1
$3^{5}A$	9	14	1	5	1	5
$4^{5}A$	14	27	1	23	1	23
$5^{5}A$	2400	1599	3335	2614	3335	2608
$6^{5}A$	2405	1611	3335	2623	3335	2617
$7^5 A$	2785	2080	3446	2665	3446	2658
$8^5 A$	2794	2091	3447	2666	3447	2660
$1^{3}A$	6	6	7	8	7	8
$2^{3}A$	11	19	7	8	7	8
$3^{3}A$	15	20	8	32	8	32
$4^{3}A$	20	33	8	33	8	32
$5^{3}A$	2407	1598	3341	2609	3341	2602
$6^{3}A$	2412	1609	3341	2609	3341	2603
$7^{3}A$	2790	2080	3453	2672	3453	2666
$8^{3}A$	2798	2091	3454	2672	3454	2666

S11.1.2 Model with full first coordination shell - geometry a

Table S17: Energetics of the T-shaped $[NpO_2]_2^{2+}$ molecule calculated with CAS(4,8)PT2/SO-RASSI, using the second-order Douglass-Kroll-Hess Hamiltonian. The geometry of the cluster comes from DFT (BP86) calculations with 9 explicit H₂O molecules and COSMO solvation model. No constraints on ground-state symmetry were imposed. For each molecule, the energy differences are calculated with respect to the lowest lying state. The first column contains labels assigned to the states.

\mathbf{Label}	$\Delta \mathbf{E} \ [\mathbf{cm}^{-1}]$	Composition in terms of the spin-free wavefunctions (weight in	a %)
1	0	$2^{5}A$ (22) $4^{5}A$ (17) $1^{5}A$ (17) $3^{5}A$ (13) $3^{3}A$ (13)	
2	0	$4^{5}A$ (22) $3^{5}A$ (17) $2^{5}A$ (17) $1^{5}A$ (13) $1^{3}A$ (13)	
3	0	$1^{5}A$ (22) $3^{5}A$ (17) $2^{5}A$ (17) $4^{5}A$ (13) $4^{3}A$ (13)	
4	0	$3^{5}A$ (22) $1^{5}A$ (17) $4^{5}A$ (17) $2^{5}A$ (13) $2^{3}A$ (13)	
5	5007	$1^{5}A$ (49) $3^{3}A$ (12) $3^{5}A$ (12) $2^{5}A$ (12) $2^{3}A$ (12)	
6	5009	$3^{5}A$ (49) $1^{3}A$ (12) $1^{5}A$ (12) $4^{5}A$ (12) $4^{3}A$ (12)	
7	5014	$2^{5}A$ (49) $1^{5}A$ (12) $4^{3}A$ (12) $4^{5}A$ (12) $1^{3}A$ (12)	
8	5016	$4^{5}A$ (49) $2^{3}A$ (12) $3^{5}A$ (12) $2^{5}A$ (12) $3^{3}A$ (12)	
9	6607	$5^{5}A$ (49) $6^{5}A$ (49)	
10	6607	$5^{5}A$ (49) $6^{5}A$ (49)	
11	6607	$5^{5}A$ (24) $5^{3}A$ (24) $6^{3}A$ (24) $6^{5}A$ (24)	
12	6607	$6^{5}A$ (24) $5^{3}A$ (24) $5^{5}A$ (24) $6^{3}A$ (24)	
13	7067	$7^5 A (49) 8^5 A (49)$	

14	7067	$7^{5}A$	(49)	$8^{5}A$	(49)						
15	7069	$7^5 A$	(25)	$8^{5}A$	(25)	$7^{3}A$	(24)	$8^{3}A$	(24)		
16	7069	$7^5 A$	(25)	$8^{5}A$	(25)	$7^{3}A$	(24)	$8^{3}A$	(24)		
17	8282	$3^5 A$	(24)	$1^{3}A$	(15)	$4^{3}A$	(15)	$2^{3}A$	(11)	$2^5 A$	(10)
18	8283	$4^5 A$	(24)	$2^{3}A$	(15)	$3^{3}A$	(15)	$1^{3}A$	(11)	$1^{5}A$	(10)
19	8283	$1^5 A$	(23)	$3^{3}A$	(15)	$2^{3}A$	(15)	$4^{3}A$	(11)	$4^5 \mathrm{A}$	(10)
20	8284	$2^5 A$	(23)	$4^{3}A$	(15)	$1^{3}A$	(15)	$3^{3}A$	(11)	$3^5 A$	(10)
21	9052	$5^5 A$	(42)	$6^{3}A$	(41)	$5^{3}A$	(8)	$6^5 A$	(7)		. ,
22	9052	$6^5 A$	(41)	$5^{3}A$	(41)	$6^{3}A$	(8)	$5^5 A$	(7)		
23	9528	$7^5 A$	(50)	$8^{3}A$	(49)		. ,		. ,		
24	9528	$7^{3}A$	(50)	$8^5 A$	(49)						
25	10801	$1^5 A$	(49)	$1^{3}A$	(49)						
26	10815	$2^{3}A$	(49)	$2^5 A$	(49)						
27	10815	$3^{3}A$	(47)	$3^5 A$	(47)	$2^5 A$	(1)	$2^{3}A$	(1)		
28	10824	$2^{3}A$	(17)	$3^5 A$	(17)	$2^5 A$	(16)	$3^{3}A$	(16)	$4^5 A$	(8)
29	10824	$1^{3}A$	(17)	$4^{5}A$	(17)	$1^{5}A$	(16)	$4^{3}A$	(16)	$2^{3}A$	(8)
30	10825	$4^{3}A$	(28)	$4^5 A$	(26)	$1^5 A$	(19)	$1^{3}A$	(18)	$3^{3}A$	(1)
31	10826	$3^{3}A$	(25)	$3^5 A$	(24)	$2^5 A$	(21)	$2^{3}A$	(20)	$4^{3}A$	(2)
32	10831	$4^{3}A$	(45)	$4^5 A$	(44)	$1^{5}A$	(3)	$1^{3}A$	(2)	$3^{3}A$	(1)
33	12379	$5^{3}A$	(48)	$5^5 A$	(48)		(-)		()		
34	12391	$6^{3}A$	(48)	$6^5 A$	(48)						
35	12402	$5^5 A$	(49)	$5^{3}A$	(49)						
36	12413	$6^5 A$	(49)	$6^{3}A$	(49)						
37	12881	$7^{3}A$	(49)	$7^5 A$	(49)						
38	12885	$7^{3}A$	(49)	7^5 A	(49)						
39	12892	$8^{3}A$	(49)	8^5 A	(49)						
40	12896	$8^{3}A$	(49)	$8^5 A$	(49)						
41	13365	$1^5 A$	(22)	$3^{3}A$	(15)	$2^{3}A$	(13)	$4^{3}A$	(12)	$2^5 A$	(12)
42	13368	$2^5 A$	(22)	$4^{3}A$	(15)	$1^{3}A$	(13)	$3^{3}A$	(12)	$1^5 A$	(11)
43	13371	$3^5 A$	(22)	$1^{3}A$	(15)	$4^{3}A$	(13)	$2^{3}A$	(12)	$4^{5}A$	(11)
44	13373	$4^5 A$	(22)	$2^{3}A$	(15)	$3^{3}A$	(13)	$1^{3}A$	(12)	$3^5 A$	(11)
45	15719	$6^{3}A$	(44)	$5^5 A$	(44)	$5^{3}A$	(4)	$6^5 A$	(3)	$1^{5}A$	(1)
46	15719	$6^5 A$	(44)	$5^{3}A$	(44)	$6^{3}A$	(4)	$5^5 A$	(3)	$2^5 A$	(1)
47	16249	$8^{3}A$	(49)	$7^5 A$	(49)						
48	16249	$8^5 A$	(49)	$7^{3}A$	(49)						
49	16622	$3^5 A$	(49)	$4^5 A$	(12)	$1^{3}A$	(12)	$1^5 A$	(12)	$4^{3}A$	(12)
50	16629	$4^5 \mathrm{A}$	(49)	$2^{3}A$	(12)	$3^5 A$	(12)	$2^5 A$	(12)	$3^{3}A$	(12)
51	16632	$1^5 A$	(47)	$3^{3}A$	(12)	$2^5 A$	(12)	$3^5 A$	(12)	$2^{3}A$	(11)
52	16639	$2^5 A$	(47)	$4^{3}A$	(12)	$1^5 A$	(12)	$4^5 A$	(12)	$1^{3}A$	(11)
53	18176	$6^{3}A$	(24)	$6^5 A$	(24)	$5^{3}A$	(24)	$5^5 A$	(24)		()
54	18176	$6^{3}A$	(24)	$6^5 A$	(24)	$5^{3}A$	(24)	$5^5 A$	(24)		
55	18180	$6^5 A$	(49)	$5^5 A$	(49)				()		
56	18180	$6^5 A$	(49)	$5^5 A$	(49)						
57	18710	$8^5 A$	(39)	$7^5 A$	(39)	$8^{3}A$	(10)	$7^{3}A$	(10)		
58	18710	$8^5 A$	(39)	$7^5 A$	(39)	$8^{3}A$	(10)	$7^{3}A$	(10)		
59	18711	$8^5 A$	(35)	$7^5 A$	(35)	$8^{3}A$	(14)	$7^{3}A$	(14)		
60	18711	$8^5 A$	(35)	$7^5 A$	(35)	$8^{3}A$	(14)	$7^{3}A$	(14)		
61	21645	$4^5 \mathrm{A}$	(21)	$3^5 A$	(18)	$2^5 A$	(16)	$1^5 \mathrm{A}$	(13)	$1^{3}A$	(12)
62	21646	$2^5 A$	(21)	$1^5 A$	(17)	$4^5 A$	(17)	$3^5 A$	(14)	$3^{3}A$	(13)
63	21647	$3^5 A$	(21)	$4^5 A$	(18)	$1^5 A$	(16)	$2^5 A$	(13)	$2^{3}A$	(12)
64	21647	$1^5 \mathrm{A}$	(21)	$2^5 \mathrm{A}$	(17)	$3^5 \mathrm{A}$	(17)	$4^5 \mathrm{A}$	(14)	$4^{3}\mathrm{A}$	(13)

Table S18: Transitions with non-negligible oscillator strengths.

То	From	Osc. strength ($\times 10^{-5}$)	$\Delta \mathbf{E} \ [\mathbf{cm}^{-1}]$	То	From	Osc. strength ($\times 10^{-5}$)	$\Delta \mathbf{E} \ [\mathbf{cm}^{-1}]$
52	55	1.4576	1541	55	64	1.5924	3467
52	56	1.5325	1541	54	61	2.8242	3469
51	55	1.5257	1548	53	63	2.8225	3471
51	56	1.4609	1548	7	22	1.8222	4038
7	10	2.7560	1593	5	21	1.8188	4045
26	36	10.9910	1598	34	50	1.0388	4238
5	9	2.7375	1600	33	49	1.0416	4243
25	35	10.9174	1601	21	41	1.0314	4313
12	17	1.8342	1675	22	42	1.0256	4316
9	19	2.9252	1676	2	11	1.2227	6607
11	18	1.8275	1676	4	12	1.2221	6607
10	20	2.9130	1677	2	11	1.1734	6607
56	62	1.5937	3466	4	12	1.1734	6607

S11.1.3 Model with five water molecules - geometry a

Table S19: Energetics of the T-shaped $[NpO_2]_2^{2+}$ molecule calculated with CAS(4,8)PT2/SO-RASSI, using the second-order Douglass-Kroll-Hess Hamiltonian. The geometry of the cluster comes from DFT (BP86) calculations with 5 explicit H₂O molecules and COSMO solvation model. No constraints on ground-state symmetry were imposed. For each molecule, the energy differences are calculated with respect to the lowest lying state. The first column contains labels assigned to the states.

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$3 2 1^5 (22) 2^5 (17) 3^5 (17) 4^5 (13) 3^3 (13)$	
4 3 2^5 (22) 1^5 (17) 4^5 (17) 3^5 (13) 4^3 (13)	
5 4952 1^5 (50) 2^5 (12) 3^5 (12) 1^3 (12) 4^3 (12)	
6	
7 4957 35 (50) 33 (12) 45 (12) 15 (12) 23 (11)	
8 4964 4^{5}_{2} (49) 4^{3}_{3} (12) 3^{5}_{2} (12) 2^{5}_{2} (12) 1^{3} (11)	
9 7529 6^3 (25) 5^3 (25) 5^5 (24) 6^5 (24)	
10 7529 $5^3_{-}(25)$ $6^3_{-}(25)$ $5^5_{-}(24)$ $6^5_{-}(24)$	
11 7531 5^5 (49) 6^5 (49)	
12 7531 5^{5} (49) 6^{5} (49)	
13 7641 7^5_{-} (50) 8^5_{-} (49)	
$14 7641 7^5 (50) 8^5 (49)$	
15 7647 7^5_{-} (25) 8^5_{-} (25) 8^3_{-} (24) 7^3_{-} (24)	
16 7647 7^5 (25) 8^5 (25) 8^3 (24) 7^3 (24)	
17 8183 3^{5}_{-} (27) 2^{3}_{-} (18) 3^{3}_{-} (16) 1^{3}_{-} (11) 2^{5}_{-} (11)	
$18 8184 2^{5} (27) 3^{3} (18) 2^{3} (16) 3^{5} (11) 4^{3} (11)$	
$19 8184 1^{5} (27) 4^{3} (18) 1^{3} (16) 4^{5} (11) 3^{3} (11)$	
$20 8186 4^{5}_{2} (27) 1^{3}_{2} (18) 4^{3}_{2} (16) 2^{3} (11) 1^{5} (11)$	
21 9965 5^{5} (49) 5^{5} (27) 6^{5} (22)	
22 9969 6^{5}_{5} (49) 6^{3}_{5} (27) 5^{3} (22)	
$23 10058 7^{\circ}_{5} (50) 8^{\circ}_{3} (49)$	
24 10059 8° (50) 7° (49)	
$25 10688 1^{5} (49) 2^{5} (48) 1^{5} (1)$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
27 10695 3^{3} (25) 1^{3} (25) 2^{5} (24) 4^{3} (23) 2^{5} (1)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$31 10701 4^3 (49) 3^3 (49)$	
$32 10710 4^{\circ} (49) 3^{\circ} (49)$	
$33 13202 2^{5} (18) 3^{3} (14) 1^{5} (13) 4^{6} (13) 2^{5} (12)$	
34 13203 1° (18) 4° (14) 2° (13) 3° (13) 1° (12)	
$35 13208 3^{\circ} (21) 2^{\circ} (18) 3^{\circ} (10) 1^{\circ} (11) 2^{\circ} (11)$	
$30 13211 4^{\circ} (21) 1^{\circ} (18) 4^{\circ} (10) 2^{\circ} (11) 1^{\circ} (11)$	
$37 13295 3^{\circ} (49) 6^{\circ} (20) 3^{\circ} (23)$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
45 15555 5 (55) 5 (52) 7 (17) 7 (10) 44 13353 8^5 (33) 8^3 (32) 7^5 (17) 7^3 (16)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$47 16429 3^5 (49) 3^3 (12) 4^5 (12) 1^5 (12) 2^3 (11)$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$50 16630 6^5 (49) 6^3 (25) 5^3 (24)$	
$51 16645 8^3 (50) 7^5 (49)$	
$52 16646 7^3 (50) 8^5 (49)$	
$53 19056 8^5 (50) 7^5 (49)$	
$54 19056 8^5 (50) 7^5 (49)$	

Label	$\Delta \mathbf{E} \ [\mathbf{cm}^{-1}]$	Con	npositi	on in	terms	of the	e spin-	free	wavefu	nction	ns (weight in	n %)
55	19058	7^{3}	(25)	8^3	(25)	8^{5}	(24)	7^{5}	(24)			
56	19058	7^{3}	(25)	8^{3}	(25)	8^{5}	(24)	7^{5}	(24)			
57	19064	6^{5}	(25)	5^{5}	(25)	6^{3}	(24)	5^3	(24)			
58	19064	6^{5}	(25)	5^{5}	(25)	5^{3}	(24)	6^{3}	(24)			
59	19071	6^{5}	(50)	5^{5}	(49)		. ,		. ,			
60	19071	6^{5}	(50)	5^{5}	(49)							
61	21387	3^5	(22)	4^{5}	(17)	1^{5}	(17)	2^{5}	(13)	1^{3}	(13)	
62	21387	4^{5}	(22)	3^{5}	(17)	2^{5}	(17)	1^{5}	(13)	2^{3}	(13)	
63	21388	1^{5}	(22)	2^{5}	(17)	3^{5}	(17)	3^3	(13)	4^{5}	(13)	
64	21389	2^{5}	(22)	4^{5}	(17)	1^{5}	(17)	4^{3}	(13)	3^{5}	(13)	

Table S20: Transitions with non-negligible oscillator strengths.

То	From	Osc. strength ($\times 10^{-5}$)	$\Delta \mathbf{E} \ [\mathbf{cm}^{-1}]$	То	From	Osc. strength ($\times 10^{-5}$)	$\Delta \mathbf{E} \ [\mathbf{cm}^{-1}]$
61	63	70607	2316	45	48	9.6073	3076
45	47	37106	3075	45	50	3.5694	3272

S11.1.4 Model with five water molecules - geometry b.

Table S21: Energetics of the T-shaped $[NpO_2]_2^{2+}$ molecule calculated with CAS(4,8)PT2/SO-RASSI, using the second-order Douglass-Kroll-Hess Hamiltonian. The geometry of the cluster comes from DFT (BP86) calculations with 5 explicit H₂O molecules and COSMO solvation model. No constraints on ground-state symmetry were imposed. For each molecule, the energy differences are calculated with respect to the lowest lying state. The first column contains labels assigned to the states.

Laber		COIL	ipositi	on m	terms	or the	; spm-	nee	waveru	liction	s (weight m	70,
1	0	3^{5}	(22)	1^{5}	(17)	4^{5}	(17)	2^{5}	(13)	1^{3}	(13)	
2	0	4^{5}	(22)	3^{5}	(17)	2^{5}	(17)	1^{5}	(13)	2^{3}	(13)	
3	2	1^{5}	(22)	2^{5}	(17)	3^{5}	(17)	4^{5}	(13)	3^{3}	(13)	
4	3	2^{5}	(22)	1^{5}	(17)	4^{5}	(17)	3^{5}	(13)	4^{3}	(13)	
5	4952	1^{5}	(50)	2^{5}	(12)	3^{5}	(12)	1^{3}	(12)	4^{3}	(12)	
6	4955	2^{5}	(50)	1^{5}	(12)	4^{5}	(12)	2^3	(12)	3^{3}	(12)	
7	4957	3^{5}	(50)	3^{3}	(12)	4^{5}	(12)	1^{5}	(12)	2^{3}	(11)	
8	4964	4^{5}	(49)	4^{3}	(12)	3^{5}	(12)	2^{5}	(12)	1^{3}	(11)	
9	7529	6^{3}	(25)	5^3	(25)	5^{5}	(24)	6^{5}	(24)			
10	7529	5^{3}	(25)	6^{3}	(25)	5^{5}	(24)	6^{5}	(24)			
11	7531	5^{5}	(49)	6^{5}	(49)							
12	7531	5^{5}	(49)	6^{5}	(49)							
13	7641	7^{5}	(50)	8^{5}	(49)							
14	7641	7^{5}	(50)	8^{5}	(49)							
15	7647	7^{5}	(25)	8^{5}	(25)	8^3	(24)	7^{3}	(24)			
16	7647	7^{5}	(25)	8^{5}	(25)	8^3	(24)	7^{3}	(24)			
17	8183	3^{5}	(27)	2^{3}	(18)	3^{3}	(16)	1^{3}	(11)	2^{5}	(11)	
18	8184	2^{5}	(27)	3^{3}	(18)	2^{3}	(16)	3^5	(11)	4^{3}	(11)	
19	8184	1^{5}	(27)	4^{3}	(18)	1^{3}	(16)	4^{5}	(11)	3^{3}	(11)	
20	8186	4^{5}	(27)	1^{3}	(18)	4^{3}	(16)	2^3	(11)	1^{5}	(11)	
21	9965	5^{5}	(49)	5^{3}	(27)	6^{3}	(22)					
22	9969	6^{5}	(49)	6^{3}	(27)	5^{3}	(22)					
23	10058	7^{5}	(50)	8^3	(49)							
24	10059	8^{5}	(50)	7^{3}	(49)							
25	10688	1^{5}	(49)	2^{3}	(48)	1^{3}	(1)					
26	10688	2^{5}	(49)	1^{3}	(48)	2^{3}	(1)	-				
27	10695	3^{5}	(25)	1^{3}	(25)	2^{5}	(24)	4^{3}	(23)	2^3	(1)	
28	10696	4^{3}	(26)	2^{5}	(25)	3^{5}	(24)	1^{3}	(22)	2^{3}	(1)	
29	10699	4^{5}	(25)	2^{3}	(25)	1^{5}	(24)	3^{3}	(23)	1^{3}	(1)	
30	10700	3^{3}	(26)	1^{5}	(25)	4^{5}	(24)	2^3	(22)	1^{3}	(1)	
31	10701	4^{3}	(49)	3^{5}	(49)							
32	10710	4^{5}_{-}	(49)	3^{3}	(49)	_						
33	13202	2^{5}	(18)	3^{3}	(14)	1^{5}	(13)	4^{3}	(13)	2^{3}	(12)	
34	13203	1^{5}	(18)	4^{3}	(14)	2^{5}	(13)	3^{3}	(13)	1^{3}	(12)	

Label $\Delta E \ [cm^{-1}]$ Composition in terms of the spin-free wavefunctions (weight in %)

Label	$\Delta \mathbf{E} \ [\mathbf{cm}^{-1}]$	Com	positi	on in	\mathbf{terms}	of the	spin-	free	wavefur	nctions	s (weight in %)
35	13208	3^{5}	(27)	2^{3}	(18)	3^{3}	(16)	1^{3}	(11)	2^{5}	(11)
36	13211	4^{5}	(27)	1^{3}	(18)	4^{3}	(16)	2^3	(11)	1^{5}	(11)
37	13295	5^{5}	(49)	6^{3}	(26)	5^{3}	(23)				
38	13299	6^{5}	(43)	5^{3}	(25)	6^{3}	(23)	5^{5}	(6)		
39	13302	5^{5}	(39)	5^{3}	(26)	6^{3}	(20)	6^{5}	(7)	1^{5}	(1)
40	13306	6^{5}	(45)	6^{3}	(25)	5^{3}	(20)	2^{5}	(1)	2^{3}	(1)
41	13351	7^{3}	(33)	7^{5}	(32)	8^{3}	(17)	8^{5}	(16)		
42	13351	7^{3}	(33)	7^{5}	(32)	8^{3}	(17)	8^{5}	(16)		
43	13353	8^{5}	(33)	8^3	(32)	7^{5}	(17)	7^{3}	(16)		
44	13353	8^{5}	(33)	8^3	(32)	7^{5}	(17)	7^{3}	(16)		
45	16426	1^{5}	(49)	2^{5}	(12)	3^{5}	(12)	4^{3}	(12)	1^{3}	(12)
46	16428	2^{5}	(49)	1^{5}	(12)	4^{5}	(12)	3^{3}	(12)	2^{3}	(12)
47	16429	3^{5}	(49)	3^{3}	(12)	4^{5}	(12)	1^{5}	(12)	2^{3}	(11)
48	16436	4^{5}	(49)	4^{3}	(12)	3^{5}	(12)	2^{5}	(12)	1^{3}	(11)
49	16625	5^{5}	(49)	5^{3}	(25)	6^{3}	(24)		. ,		. ,
50	16630	6^{5}	(49)	6^{3}	(25)	5^{3}	(24)				
51	16645	8^3	(50)	7^{5}	(49)		. ,				
52	16646	7^{3}	(50)	8^{5}	(49)						
53	19056	8^{5}	(50)	7^{5}	(49)						
54	19056	8^{5}	(50)	7^{5}	(49)						
55	19058	7^{3}	(25)	8^3	(25)	8^{5}	(24)	7^{5}	(24)		
56	19058	7^{3}	(25)	8^3	(25)	8^{5}	(24)	7^{5}	(24)		
57	19064	6^{5}	(25)	5^{5}	(25)	6^{3}	(24)	5^3	(24)		
58	19064	6^{5}	(25)	5^{5}	(25)	5^{3}	(24)	6^{3}	(24)		
59	19071	6^{5}	(50)	5^{5}	(49)		. ,		. ,		
60	19071	6^{5}	(50)	5^{5}	(49)						
61	21387	3^{5}	(22)	4^{5}	(17)	1^{5}	(17)	2^{5}	(13)	1^{3}	(13)
62	21387	4^{5}	(22)	3^5	(17)	2^{5}	(17)	1^{5}	(13)	2^{3}	(13)
63	21388	1^{5}	(22)	2^{5}	(17)	3^{5}	(17)	3^3	(13)	4^{5}	(13)
64	21389	2^{5}	(22)	4^{5}	(17)	1^{5}	(17)	4^{3}	(13)	3^5	(13)

S11.1.5 Model without explicit first coordination shell.

Table 21: Energetics of the T-shaped $[NpO_2]_2^{2+}$ molecule calculated with CAS(4,8)PT2/SO-RASSI, using the second-order Douglass-Kroll-Hess Hamiltonian. The geometry of the cluster comes from DFT (BP86) calculations, where the solution was modelled by COSMO. The point group symmetry of the molecule is C_{2v} . For each molecule, the energy differences are calculated with respect to the lowest lying state. The first column contains labels assigned to the states.

Label	$\Delta \mathbf{E} \ [\mathbf{cm}^{-1}]$	Compositi	on in terms	of the spin-	free wavefu	nctions (weight in $\%$)
1	0	1^5B_1 (22)	$1^{5}A_{2}$ (17)	$1^{5}B_{2}$ (17)	$1^{3}A_{1}$ (13)	$1^{5}A_{1}$ (13)
2	1	$1^5 A_2$ (22)	$1^{5}A_{1}$ (17)	$1^{5}B_{1}$ (17)	$1^{3}B_{1}$ (13)	1^5B_2 (13)
3	18	1^5B_2 (22)	$1^{5}B_{1}$ (17)	$1^{5}A_{1}$ (17)	$1^{5}A_{2}$ (13)	$1^{3}A_{2}$ (13)
4	20	$1^5 A_1$ (22)	$1^{5}A_{2}$ (17)	$1^{5}B_{2}$ (17)	1^5B_1 (13)	$1^{3}B_{2}$ (13)
5	4902	$1^{5}A_{2}$ (50)	$1^{3}A_{1}$ (12)	$1^5 A_1$ (12)	1^5B_1 (12)	$1^{3}B_{2}$ (11)
6	4915	$1^5 A_1 (49)$	$1^{3}A_{2}$ (13)	$1^{5}B_{2}$ (12)	$1^{5}A_{2}$ (12)	$1^{3}B_{1}$ (12)
7	4926	1^5B_1 (49)	1^5B_2 (12)	$1^{3}B_{1}$ (12)	$1^5 A_2$ (12)	$1^{3}A_{2}$ (12)
8	4938	1^5B_2 (50)	$1^{3}B_{2}$ (12)	$1^5 A_1 (12)$	1^5B_1 (12)	$1^{3}A_{1}$ (12)
9	6600	$2^5 A_2$ (50)	$2^5 A_1$ (39)	$4^{5}A_{1}$ (6)	4^5B_2 (2)	
10	6612	$2^5 A_2$ (50)	$2^5 A_1$ (39)	$4^{5}A_{1}$ (7)	$4^{5}B_{2}(2)$	
11	6987	$3^5 A_1$ (50)	2^5B_2 (42)	3^5B_2 (6)		
12	6987	$3^5 A_1$ (50)	2^5B_2 (42)	3^5B_2 (6)		
13	7004	$2^5 A_2$ (28)	$2^5 A_1$ (22)	$2^{3}A_{1}$ (22)	$2^{3}A_{2}$ (21)	$4^{5}B_{2}$ (4)
14	7098	$2^{3}A_{2}$ (25)	$2^5 A_2 (24)$	$2^5 A_1$ (23)	$2^{3}A_{1}$ (23)	$4^{5}B_{2}$ (3)
15	8110	$1^5 A_2$ (27)	$1^{3}B_{2}$ (18)	$1^{3}A_{1}$ (16)	$1^{5}B_{2}$ (11)	$1^{3}B_{1}$ (11)
16	8111	1^5B_1 (27)	$1^{3}A_{2}$ (18)	$1^{3}B_{1}$ (16)	$1^{5}A_{1}$ (11)	$1^{3}A_{1}$ (11)
17	8117	1^5B_2 (28)	$1^{3}A_{1}$ (18)	$1^{3}B_{2}$ (16)	$1^{5}A_{2}$ (11)	$1^{3}A_{2}$ (11)
18	8122	$1^{5}A_{1}$ (27)	$1^{3}B_{1}$ (18)	$1^{3}A_{2}$ (16)	1^5B_1 (11)	$1^{3}B_{2}$ (11)
19	8995	$3^{5}A_{1}$ (50)	2^5B_2 (23)	$1^{3}B_{1}$ (23)	$3^{5}B_{2}$ (3)	
20	8995	$3^5 A_1 (50)$	2^5B_2 (23)	$1^{3}B_{1}$ (23)	$3^{5}B_{2}$ (3)	

21	9249	$2^{3}A_{2}$ (50)	$2^5 A_1$ (38)	$4^{5}A_{1}$ (6)	4^5B_2 (3)	
22	9269	$2^{5}A_{2}(52)$	$2^{3}A_{1}(38)$	$4^{5}B_{2}(7)$	$2^{5}A_{1}(1)$	
23	9907	$1^{3}B_{1}(50)$	$3^{5}A_{1}(49)$	- ()	- ()	
24	10414	$2^{3}A_{2}$ (30)	$2^{5}A_{2}(24)$	$4^{5}A_{1}$ (21)	$4^{5}B_{2}$ (21)	
25	10565	$1^{5}B_{2}$ (50)	$1^{3}B_{1}$ (49)	()	2 ()	
26	10576	$1^{3}B_{1}$ (23)	$1^{5}A_{2}$ (23)	$1^{5}B_{2}$ (21)	$1^{3}A_{2}$ (20)	$1^{3}A_{1}$ (5)
27	10580	$1^{3}A_{2}$ (26)	$1^{5}B_{2}$ (26)	$1^{5}A_{2}$ (23)	$1^{3}B_{1}$ (23)	1 111 (0)
28	10593	$1^{5}A_{0}$ (49)	$1^{3}A_{2}$ (49)	1 112 (20)	1 D1 (20)	
20	10599	$1^{5}\Delta_{1}$ (45)	$1^{3}\Delta_{1}$ (43)	$1^{3}B_{1}$ (2)	$1^{5} \Delta_{2}$ (2)	$1^{5}B_{2}$ (2)
20	10637	$1^{3}\Lambda_{1}$ (26)	$1^{5}R_{1}$ (25)	$1^{5}\Lambda_{1}$ (22)	$1^{3}R_{2}$ (22)	$1 D_2 (2)$
91	10628	$1^{3}R_{-}(26)$	$1 D_1 (20)$ $15 \Lambda_1 (26)$	15D, (22)	134.(22)	
20	10030	$1^{5}D_{2}(20)$ 15D(40)	$1^{3} A_{1} (20)$ $1^{3} D (40)$	$1^{\circ}D_{1}(23)$	$1^{\circ}A_{1}(22)$	
ა <u>ა</u>	10075	$1^{\circ} D_1 (49)$	$1^{\circ}D_2$ (49)	45 4 (91)		
33	11090	$2^{\circ}A_2$ (34)	$2^{\circ}A_2$ (33)	$4^{\circ}A_{1}(31)$	13 (7)	13D (c)
34	13066	$2^{\circ}A_1$ (29)	$2^{3}A_{1}$ (29)	$1^{3}B_{1}$ (11)	$1^{\circ}A_{2}(7)$	$1^{\circ}B_{1}(0)$
35	13084	$1^{6}B_{2}$ (26)	$1^{3}A_{1}$ (18)	$1^{3}B_{2}$ (15)	$1^{3}A_{2}$ (10)	$^{10}A_2$ (10)
36	13092	$1^{5}A_{1}$ (27)	$1^{3}B_{1}$ (18)	$1^{3}A_{2}$ (15)	$1^{3}B_{2}$ (11)	$1^{9}B_{1}$ (11)
37	13093	$2^{5}B_{2}$ (99)				
38	13099	$2^{5}_{2}A_{1}$ (48)	$2^{3}A_{1}$ (48)	0	0	_
39	13108	$1^{5}_{2}A_{2}$ (27)	$1^{3}B_{2}$ (18)	$1^{3}A_{1}$ (16)	$1^{3}B_{1}$ (11)	$1^{5}B_{2}$ (10)
40	13130	$2^{5}B_{2}$ (50)	$1^{3}B_{1}$ (49)			
41	13130	$2^{5}B_{2}$ (50)	$1^{3}B_{1}$ (49)	_		
42	13143	$2^5 A_1$ (20)	$2^{3}A_{1}$ (20)	1^5B_1 (16)	$1^{3}A_{2}$ (10)	$1^{3}B_{1}$ (10)
43	13582	$4^{5}A_{1}$ (36)	$2^5 A_1$ (33)	4^5B_2 (28)		. ,
44	13928	$4^{5}B_{2}$ (30)	$4^{5}A_{1}$ (30)	$2^{3}A_{1}$ (18)	$2^5 A_1$ (18)	$2^5 A_2$ (1)
45	14445	$4^{5}A_{1}(74)$	$2^{5}A_{1}$ (23)	$2^{3}A_{2}(1)$	× /	~ /
46	14503	$3^{5}B_{2}$ (75)	$2^{5}B_{2}(23)$	$3^{5}A_{1}(1)$		
47	14503	$3^{5}B_{2}$ (75)	$2^{5}B_{2}$ (23)	$3^{5}A_{1}(1)$		
48	14669	$3^{5}B_{2}$ (82)	$1^{3}B_{1}(8)$	$2^{5}B_{2}(7)$	$3^{5}A_{1}$ (2)	
49	14670	$3^{5}B_{2}$ (82)	$1^{3}B_{1}$ (8)	$2^{5}B_{2}$ (7)	$3^{5}A_{1}$ (2)	
50	14681	$4^{5}B_{2}$ (75)	$4^{5}A_{1}$ (9)	$2^{3}A_{1}$ (6)	$2^{5}A_{1}$ (6)	$2^{5}A_{2}$ (2)
51	14776	$4^{5}B_{2}$ (78)	$2^{3}A_{1}$ (5)	$2^{5}A_{2}$ (5)	$2^{5}A_{1}$ (5)	$4^{5}A_{1}$ (3)
52	14872	$4^{5}\Delta_{1}$ (10)	$2^{3}\Delta_{1}$ (91)	$4^{5}B_{2}$ (20)	$2^{5}A_{2}$ (6)	$2^{5}A_{1}$ (6)
52 53	14012	$3^{5}B_{2}$ (00)	2 AI (21)	$\pm D_2 (20)$	$2 n_2 (0)$	2 A1 (0)
54	15759	$5 D_2 (33)$ $55 R_2 (00)$				
04 55	15752	2 D1 (99) 25 D (00)				
55 50	10703	$2^{\circ}B_1 (99)$				
56	15754	$2^{\circ}B_1$ (99)				
57	15754	$2^{\circ}B_1$ (99)				
58	15754	$2^{\circ}B_{1}$ (99)				
59	15763	$2^{3}B_{2}$ (99)				
60	15763	$2^{\circ}B_2$ (99)				
61	15763	$2^{3}B_{2}$ (99)				
62	16111	$4^{5}A_{1}$ (53)	$4^{5}B_{2}$ (45)			
63	16117	$4^{5}B_{2}$ (53)	$4^{5}A_{1}$ (46)	_	_	
64	16235	$1^{5}B_{2}$ (49)	$1^{3}B_{2}$ (13)	$1^{5}B_{1}$ (12)	$1^{5}A_{1}$ (12)	$1^{3}A_{1}$ (11)
65	16263	$1^5 A_1 (49)$	$1^{3}A_{2}$ (13)	$1^5 A_2 (12)$	1^5B_2 (12)	$1^{3}B_{1}$ (11)
66	16320	1^5B_1 (47)	1^5B_2 (11)	$1^{3}B_{1}$ (11)	$1^{3}A_{2}$ (11)	$1^5 A_2$ (11)
67	16322	$1^{5}A_{2}(49)$	$1^{3}A_{1}(12)$	$1^{3}B_{2}(12)$	$1^{5}A_{1}(12)$	$1^{5}B_{1}(12)$
68	16354	$4^{5}A_{1}^{-}(61)$	$2^{3}A_{2}(16)$	$2^{5}A_{2}(9)$	$4^{5}B_{2}(6)$	$1^{5}B_{1}(2)$
69	16434	$3^{5}A_{1}(49)$	$1^{3}B_{1}(49)$	× /	. /	~ /
70	16642	$4^{5}B_{2}$ (38)	$2^{3}A_{2}$ (28)	$4^{5}A_{1}$ (15)	$2^{5}A_{2}$ (13)	$2^{3}A_{1}$ (1)
71	17253	$2^{3}A_{2}$ (47)	$2^{5}A_{1}$ (29)	$4^{5}A_{1}$ (14)	$4^{5}B_{2}(8)$	· (-)
72	17550	$3^{5}A_{1}$ (47)	$1^{3}B_{1}$ (19)	$2^{5}B_{2}$ (18)	$3^{5}B_{2}(14)$	
73	17551	$3^{5}A_{1}$ (47)	$1^{3}B_{1}$ (19)	$2^{5}B_{2}$ (18)	$3^{5}B_{2}$ (14)	
74	17744	$2^{5}A_{0}$ (40)	$4^{5}B_{2}$ (33)	$2^{3}A_{1}$ (20)	$4^{5}A_{1}$ (4)	$2^{5}A_{1}$ (1)
75	10351	$2^{5}\Delta_{2}$ (40)	$2^{3}\Delta_{0}$ (33)	$2^{3}\Delta_{1}$ (20)	$5^{5}\Delta$, (20)	$\frac{2}{4^5 B_0} \frac{(1)}{(11)}$
10 76	10597	$2 \text{ m}_2(20)$	$2 n_2 (22)$ $23 \Lambda (10)$	$2 \text{ A}_1 (20)$ $25 \text{ A}_2 (10)$	$2 A_1 (20)$ $23 A_2 (17)$	$4 D_2 (11)$ $45 P_2 (14)$
10	10696	$2^{-} A_2 (29)$ $25 \Lambda (47)$	$2^{\circ} A_1 (10)$ $25 D_2 (24)$	$2^{-}A_1$ (10) $25D_2$ (17)	$2^{-}A_{2}(11)$	$4^{\circ}D_2$ (14)
11	19080	$3^{\circ}A_1(47)$	$2^{\circ}B_2(34)$	$3^{\circ}B_2(17)$		
78	19686	$3^{\circ}A_1$ (47)	$2^{\circ}B_2$ (34)	$3^{\circ}B_2$ (17)	(5)	
79	19912	$2^{5}A_{2}$ (48)	$2^{5}A_{1}$ (34)	$4^{\circ}A_1$ (14)	$4^{3}B_{2}$ (3)	
80	19938	$2^{\circ}A_2$ (48)	$2^{\circ}A_1$ (33)	$4^{\circ}A_1$ (13)	$4^{\circ}B_2$ (4)	E
	01100	$1^{5}B_{0}$ (21)	$1^{5}B_{1}$ (17)	$1^{5}A_{1}$ (17)	$1^{3}A_{2}$ (13)	$1^{5}A_{2}$ (13)
81	21180	1 1 2 (21)	(/	_ ` ´		-
$\frac{81}{82}$	21186 21195	$1^{5}A_{1}$ (22)	$1^{5}A_{2}(17)$	$1^{5}B_{2}$ (16)	$1^{3}B_{2}$ (14)	$1^{5}B_{1}$ (13)
81 82 83	21186 21195 21204	$1^{5} A_{1} (22)$ $1^{5} B_{1} (22)$	$1^{5}A_{2}$ (17) $1^{5}A_{2}$ (17)	$1^{5}B_{2}$ (16) $1^{5}B_{2}$ (17)	$1^{3}B_{2}$ (14) $1^{3}A_{1}$ (13)	$1^{5}B_{1}$ (13) $1^{5}A_{1}$ (13)

То	From	Osc. strength ($\times 10^{-5}$)	$\Delta \mathbf{E} \ [\mathbf{cm}^{-1}]$	То	From	Osc. strength ($\times 10^{-5}$)	$\Delta \mathbf{E} \ [\mathbf{cm}^{-1}]$
43	50	14.5949	1099	19	41	5.5696	4135
70	74	37.6175	1102	20	40	5.5732	4135
22	24	21.4476	1145	41	72	5.0890	4420
21	24	6.0306	1165	40	73	5.0863	4421
43	51	2.0690	1194	33	63	4.6070	4427
52	62	3.2104	1239	24	52	3.0326	4458
51	63	2.6043	1341	52	75	2.2293	4479
68	74	31.1310	1390	52	76	1.1680	4655
66	74	1.2365	1424	45	76	3.5357	5082
52	66	1.1278	1448	51	79	7.1823	5136
52	68	31.0219	1482	51	80	4.4320	5162
53	69	1.9517	1522	46	77	1.2507	5183
62	74	8.9071	1633	47	78	1.2507	5183
74	76	11.5189	1783	50	79	4.6206	5231
33	43	5.8892	1892	50	80	6.9606	5257
71	75	1.0277	2098	44	76	1.3808	5599
45	70	4.7232	2197	43	75	1.3104	5769
33	44	9.5549	2238	33	74	2.5741	6054
13	22	2.4476	2265	14	43	1.2974	6484
71	76	1.0749	2274	24	71	2.1234	6839
22	33	1.6926	2421	22	62	3.2122	6842
44	68	6.1374	2426	13	44	1.7054	6924
43	70	15.5887	3060	22	68	1.1693	7085
24	43	13.6874	3168	22	70	1.8406	7373
33	52	1.9683	3182	21	70	1.2422	7393
23	37	14.4690	3186	10	50	1.4425	8069
63	75	4.5873	3234	9	50	5.7166	8081
37	69	13.7623	3341	10	51	6.1157	8164
24	44	3.3517	3514	9	51	1.4336	8176
68	79	1.7679	3558	14	63	1.6566	9019
62	80	1.4369	3827				

Table S22: Transitions with non-negligible oscillator strengths.

S11.2 Diamond-shaped cluster in calculations with CAS(8,12)

S11.2.1 Model with full first coordination shell - geometry b

Table S23: Energetics of the diamond-shaped $[NpO_2]_2^{2+}$ molecule calculated with CAS(4,8)PT2/SO-RASSI. For each molecule, the energy differences are calculated with respect to the lowest lying state. The first column contains labels assigned to the states.

Label	$\Delta \mathbf{E} \ [\mathbf{cm}^{-1}]$	Com	positi	on in	\mathbf{terms}	of the	spin-	free w	vavefun	ctions	(weight in %)
1	0	$2^{5}A$	(37)	$4^{5}A$	(36)	$1^{5}A$	(23)	$8^{5}A$	(1)		
2	0	$2^5 A$	(37)	$4^{5}A$	(36)	$1^5 A$	(23)	$8^{5}A$	(1)		
3	4856	$3^5 A$	(44)	$1^{3}A$	(22)	$2^{3}A$	(10)	$4^{3}A$	(10)	$3^{3}A$	(4)
4	4857	$3^{3}A$	(44)	$1^5 A$	(20)	$4^{5}A$	(12)	$2^5 A$	(10)	$3^5 A$	(4)
5	5695	$1^{3}A$	(46)	$3^5 A$	(20)	$2^{3}A$	(19)	$4^{3}A$	(9)	$8^{3}A$	(1)
6	5696	$1^{3}A$	(45)	$3^5 A$	(20)	$2^{3}A$	(19)	$4^{3}A$	(9)	$1^5 A$	(1)
7	5698	$1^5 A$	(45)	$3^{3}A$	(23)	$2^5 A$	(18)	$4^{5}A$	(6)	$1^{3}A$	(1)
8	5701	$1^5 A$	(46)	$3^{3}A$	(24)	$2^5 A$	(19)	$4^5 A$	(6)	$8^5 A$	(1)
9	5747	$4^{3}A$	(39)	$2^{3}A$	(28)	$3^5 A$	(27)	$1^{3}A$	(1)		
10	5748	$4^{3}A$	(39)	$2^{3}A$	(28)	$3^5 A$	(28)	$1^{3}A$	(1)		
11	5751	$4^5 A$	(42)	$2^5 A$	(29)	$3^{3}A$	(24)	$1^5 A$	(1)		
12	5752	$4^5 A$	(43)	$2^5 A$	(29)	$3^{3}A$	(24)	$1^5 A$	(1)		
13	7331	$8^5 A$	(42)	$7^{5}A$	(40)	$1^5 A$	(7)	$6^5 A$	(6)	$2^5 A$	(1)
14	7331	$8^5 A$	(42)	$7^{5}A$	(40)	$1^5 A$	(7)	$6^5 A$	(6)	$2^5 A$	(1)
15	7353	$5^5 A$	(48)	$6^5 A$	(40)	$7^5 A$	(6)	$3^5 A$	(2)	$7^{3}A$	(1)
16	7353	$5^5 A$	(48)	$6^5 A$	(40)	$7^5 A$	(6)	$3^5 A$	(2)		
17	7418	$5^5 A$	(25)	8 ³ A	(24)	$6^5 A$	(23)	$7^{3}A$	(23)	$7^5 A$	(2)
18	7420	$6^{5}A$	(25)	$5^5 A$	(23)	8 ³ A	(22)	$7^{3}A$	(20)	$6^3 A$	(3)
19	7421	$7^5 \Lambda$	(25)	8 ⁵ A	(24)	$5^3 \Lambda$	(21)	$6^3 A$	(20)	$7^3 \Lambda$	(3)
20	7421	8 ⁵ A	(25)	53 A	(24) (23)	6 ³ A	(21) (23)	75Λ	(20) (23)	6 ⁵ A	(2)
20	9718	8 ³ A	(20) (33)	6 ⁵ A	(20)	5 ⁵ A	(20)	13 A	(20)	$7^{3}\Lambda$	(2) (6)
21	9721	$6^3 \Lambda$	(38)	85 A	(32)	1 ⁵ Δ	(10)	53 A	(3)	75Δ	(6)
22	9764	$7^{3} \Delta$	(37)	55 A	(32) (37)	65 A	(3)	83 A	(6)	75 A	(5)
20	9704 0779	53 1	(30)	75 A	(31)	6 ³ A	(0) (7)	85 A	(0) (7)	6 ⁵ A	(6)
24	3112 11597	15 A	(39)	131	(30)	0 A 03 A	(1)	0 A 05 A	(1)	15 A	(0)
20 26	11540	4 A 15 A	(32)	4 A 13 A	(30)	2 A 95 A	(10)	2 A 93 A	(11) (15)	75 A	(2) (2)
20	11540	-4 A 	(29)	4 A	(20)	2 A	(10)	2 A	(10)	1 1	(2)
21	11040	5'A 95 A	(90)	$6^{\circ} A$	(2)						
20 20	11540	15 A	(90)	0 A 45 A	(2)	95 A	(22)	ο5 Λ	(7)		
29	11551	15 A	(41)	4 A 45 A	(27)	2° A 95 A	(22)	0'A	(7)		
30	11550	1° A 13 A	(41)	4° A	(21)	2° A 43 A	(22)	8° A	(1)	c5 A	(0)
31 20	11559	1°A	(37)	2°A 15 A	(30)	4° A 45 A	(12)	8°A	(9)	$0^{\circ}A$	$\begin{pmatrix} 2 \end{pmatrix}$
32	11002	2° A 5 A	(39)	$1^{\circ}A$	(37)	4°A	(8)	8° A	(8)	$0^{\circ}A$	(2)
33	13036	5° A 55 A	(48)	8°A	(43)	1°A 13A	(6)				
34	13036	5°A 53 A	(48)	8°A	(43)	1°A 15A	(6)				
35	13042	$5^{\circ}A$	(48)	8°A	(42)	1°A	(6)				
36	13047	$5^{\circ}A$	(48)	8°A	(43)	1°A	(6)	05.4	(1)	-3 4	(1)
37	13107	6 ⁵ A	(46)	7 ³ A	(34)	$6^{3}A$	(13)	$2^{3}A$	(1)	7 ⁵ A	(1)
38	13110	$6^{3}A$	(47)	7 ³ A	(40)	$6^{3}A$	(7)	2 ³ A	(1)	3 ⁵ A	(1)
39	13110	7 ⁵ A	(46)	$6^{\circ}A$	(31)	7°A	(16)	2 ⁵ A	(1)	3°A	(1)
40	13112	$7^{3}A$	(43)	6 ³ A	(41)	7 ³ A	(6)	$6^{3}A$	(3)	2 ⁵ A	(1)
41	16300	$6^{\circ}A$	(41)	8 ³ A	(37)	1 ³ A	(7)	3°A	(6)	2 ⁵ A	(1)
42	16308	$6^{\circ}A$	(37)	^{80}A	(36)	1°A	(7)	7°A	(6)	$3^{\circ}A$	(6)
43	16435	$5^{\circ}A$	(39)	7°A	(36)	$5^{\circ}A$	(9)	73A	(9)	6 ³ A	(1)
44	16436	$5^{\circ}A$	(38)	7 ³ A	(32)	7°A	(10)	$5^{\circ}A$	(9)	$6^{\circ}A$	(6)
45	17245	1°A	(39)	2°A	(28)	3º A	(17)	$4^{3}A$	(8)	8°A	(2)
46	17246	13A	(38)	2°A	(28)	3º A	(14)	4 ³ A	(11)	8 ³ A	(2)
47	17250	$1^{\circ}A$	(37)	$2^{\circ}A$	(28)	3°A	(23)	$4^{\circ}A$	(2)	8°A	(2)
48	17253	$1^{\circ}A$	(37)	$2^{\circ}A$	(31)	$3^{3}A$	(21)	$4^{\mathrm{o}}\mathrm{A}$	(4)	8°A	(2)
49	17281	$4^{3}A$	(39)	$3^{5}A$	(30)	$2^{3}A$	(19)	$1^{3}A$	(4)	$7^{3}A$	(1)
50	17284	$4^{3}A$	(37)	$3^{5}A$	(32)	$2^{3}A$	(18)	$1^{3}A$	(5)	$7^{3}A$	(1)
51	17286	$4^{5}A$	(44)	$3^{3}A$	(24)	$2^{5}A$	(19)	$1^{5}A$	(5)	$7^{5}A$	(1)
52	17290	$4^{5}A$	(44)	$3^{3}A$	(26)	$2^5 A$	(16)	$1^5 A$	(7)	$7^{5}A$	(1)

Label	$\Delta \mathbf{E} \ [\mathbf{cm}^{-1}]$	Composit	ion in terms	s of the spin-	free wavefu	nctions (weight in %)
53	18243	$3^5 A$ (39)	$1^{3}A$ (15)	$4^{3}A$ (11)	$2^{3}A$ (9)	$8^{3}A$ (7)
54	18248	$3^{3}A$ (39)	$1^{5}A$ (15)	$4^{5}A$ (11)	$2^{5}A$ (9)	$8^{5}A$ (8)
55	18764	$8^5 A$ (42)	$7^5 A$ (40)	$6^5 A$ (6)	$1^{5}A$ (6)	$2^{5}A$ (2)
56	18764	$8^5 A$ (42)	$7^5 A$ (40)	$6^5 A$ (6)	$1^{5}A$ (6)	$2^{5}A$ (2)
57	18876	$5^{5}A$ (43)	$6^5 A$ (37)	$8^{3}A$ (6)	$7^{3}A$ (6)	$7^{5}A$ (5)
58	18876	$5^{5}A$ (44)	$6^5 A$ (38)	$7^{5}A$ (5)	$8^{3}A$ (5)	$7^{3}A$ (5)
59	18901	$8^5 A$ (26)	$6^{3}A$ (23)	$5^{3}A$ (22)	$7^5 A$ (21)	$6^{5}A$ (3)
60	18904	$8^5 A$ (24)	$6^{3}A$ (23)	$5^{3}A$ (20)	$7^{5}A$ (15)	$6^5 A$ (10)
61	18904	$5^{5}A$ (27)	$6^5 A$ (19)	$7^{3}A$ (18)	$8^{3}A$ (18)	$7^{5}A$ (10)
62	18907	$5^{5}A$ (28)	$6^5 A$ (25)	$8^{3}A$ (20)	$7^{3}A$ (19)	$7^{5}A$ (4)
63	23075	$2^5 A$ (35)	$4^{5}A$ (35)	$1^{5}A$ (21)	$8^5 A$ (4)	$7^{5}A$ (2)
64	23075	$2^5 A$ (35)	$4^5 A$ (35)	$1^{5}A$ (21)	$8^5 A$ (4)	$7^{5}A$ (2)

Table S24: Transitions with non-negligible oscillator strengths.

То	From	Osc. strength ($\times 10^{-5}$)	$\Delta \mathbf{E} \ [\mathbf{cm}^{-1}]$	То	From	Osc. strength ($\times 10^{-5}$)	$\Delta \mathbf{E} \ [\mathbf{cm}^{-1}]$
52	61	1.7546	1614	15	29	2.3256	4198
50	59	1.4272	1617	16	30	2.3265	4198
49	59	1.9271	1620	36	45	2.0773	4198
50	60	1.6123	1620	57	63	1.7124	4199
51	62	2.0061	1621	57	64	2.0929	4199
48	57	2.7718	1623	58	63	2.1964	4199
49	60	1.2519	1623	58	64	1.7976	4199
47	58	2.3714	1626	35	46	1.9917	4204
48	61	8.3025	1651	13	27	2.4772	4214
47	61	1.0065	1654	14	28	2.4826	4214
48	62	1.0781	1654	34	47	2.0653	4214
46	59	7.3448	1655	33	48	1.9674	4217
45	59	4.8194	1656	4	21	1.5757	4861
47	62	9.1374	1657	3	22	1.5761	4865
46	60	4.5678	1658	31	44	1.2880	4877
45	60	7.1054	1659	4	23	2.2032	4907
11	17	2.8112	1667	3	24	2.1870	4916
12	18	2.7004	1668	27	56	1.2661	7219
10	19	2.4192	1673	28	55	1.2593	7219
9	20	2.4747	1676	27	56	1.2489	7219
8	18	10.7752	1719	28	55	1.2425	7219
7	17	11.2455	1720	5	35	1.3057	7347
8	19	1.0177	1720	5	35	1.2626	7347
5	18	1.1216	1725	6	36	1.3102	7351
6	19	4.5070	1725	6	36	1.2656	7351
5	19	5.9852	1726	1	15	1.7912	7353
6	20	6.8120	1727	1	16	1.3440	7353
5	20	4.9743	1728	2	15	1.3403	7353
24	31	6.0348	1787	2	16	1.7965	7353
23	32	5.7914	1798	1	15	1.7512	7353
44	53	5.5577	1807	1	16	1.2469	7353
43	53	5.6502	1808	2	15	1.2437	7353
44	54	5.5967	1812	2	16	1.7560	7353
43	54	5.5375	1813	12	38	1.2122	7358
22	25	2.4894	1816	12	38	1.1390	7358
21	25	3.1685	1819	10	37	1.2840	7359
22	26	3.2333	1819	11	39	1.2651	7359
21	26	2.5552	1822	10	37	1.2254	7359
40	50	1.7566	4172	11	39	1.1864	7359
37	49	2.1274	4174	9	40	1.3118	7365
39	51	1.7253	4176	9	40	1.2433	7365
38	52	1.3302	4180				

S11.2.2 Model without explicit first coordination shell

Table S25: Energetics of the diamond-shaped $[NpO_2]_2^{2+}$ molecule calculated with CAS(8,12)PT2/SO-RASSI. For each molecule, the energy differences are calculated with respect to the lowest lying state.

Label	$\Delta \mathbf{E} \ [\mathbf{cm}^{-1}]$	Compositio	on in terms	of the spin-	free wavefu	nctions (weight in %)
1	0	$2^{5}A_{g}$ (49)	$1^{5}A_{g}$ (31)	$2^{5}A_{u}$ (17)		
2	0	$2^{3}A_{g}$ (49)	$1^{3}A_{g}$ (31) $2^{3}A$ (25)	$2^{3}A_{u}$ (17) $1^{3}A$ (22)		
3 4	4621 4830	$1^{-}A_{u}$ (49) $2^{3}A$ (49)	$2^{5}A_{g}(23)$ $2^{5}A(32)$	$1^{5}A_{g}$ (23) $1^{5}A$ (17)		
5	4650 5687	$1^{3}A_{u}$ (43)	$1^{3}A_{a}$ (41)	$2^{3}A_{g}$ (11)	$1^5 A_{u}$ (6)	
6	5687	$1^{3}A_{u}$ (44)	$1^{3}A_{a}$ (41)	$2^{3}A_{a}$ (8)	$1^{5}A_{u}$ (5)	
7	5699	$1^{5} A_{u}^{u} (34)$	$2^{3}A_{g}^{9}(33)$	$1^{5}A_{q}^{g}$ (10)	$2^5 A_a$ (6)	$1^{3}A_{q}$ (6)
8	5700	$1^5 A_u$ (41)	$2^{3}A_{g}^{3}$ (38)	$1^{3}A_{g}^{3}(8)$	$1^{3}A_{u}^{3}$ (5)	$1^{5} A_{g}^{5} (3)$
9	5700	$1^5 A_g$ (39)	$2^5 A_g (28)$	$2^{3}A_{u}$ (11)	$1^{5} A_{u}$ (8)	$2^{3}A_{g}(8)$
10	5701	$1^{5}_{5}A_{g}$ (45)	$2^{5}A_{g}$ (34)	$2^{3}A_{u}$ (12)	$1^{5}A_{u}$ (3)	$2^{3}A_{g}$ (3)
11	5709	$2^{5}A_{u}$ (49)	$2^{3}A_{u}$ (36)	$2^{5}A_{g}$ (13)		
12	5711	$2^{5}A_{u}$ (49)	$2^{5}A_{u}$ (34)	$2^{5}A_{g}$ (14)		
13	8097	$2^{5}B_{u}$ (49) $2^{5}D$ (40)	$2^{\circ}B_{g}$ (47) $2^{5}D$ (47)	$1^{6}A_{g}$ (1) $1^{5}A$ (1)		
14 15	8104	$^{2^{+}}D_{u}$ (49) ^{15}B (49)	$2^{5}Dg(47)$ $1^{5}B(48)$	$\Gamma A_g(1)$		
16	8104	$1^{5}B_{u}$ (49)	$1^{5}B_{a}$ (48)			
17	8121	$1^{5}B_{a}$ (24)	$1^{5}B_{u}$ (24)	$1^{3}B_{a}$ (23)	$2^{3}B_{a}$ (23)	
18	8121	$1^{3}B_{u}^{9}(23)$	$2^{3}B_{u}^{(23)}$	$2^{5}B_{q}^{9}$ (23)	$2^{5}B_{u}^{9}(22)$	$1^{5}B_{q}$ (2)
19	8122	$2^{3}B_{g}$ (23)	$1^{3}B_{g}$ (23)	$1^5 B_u^{(23)}$	$1^{5}B_{g}(22)$	$2^{5}B_{u}^{5}(2)$
20	8123	$2^5 B_u^{-}(24)$	$2^5 B_g (24)$	$2^{3}B_{u}$ (24)	$1^{3}\mathrm{B}_{u}(24)$	
21	10467	$1^{5}B_{g}$ (46)	$2^{3}B_{g}$ (43)	$1^{3}_{J}A_{g}$ (6)	$2^{3}_{J}A_{g}(2)$	
22	10482	$2^{3}_{5}B_{u}$ (45)	$2^{5}B_{g}$ (42)	$1^{5}A_{g}$ (5)	$1^{5}B_{u}$ (3)	$1^{3}B_{g}$ (2)
23	10493	$1^{3}B_{u}$ (45)	$1^{3}B_{g}$ (45)	$1^{3}A_{u}$ (3)	$2^{3}B_{g}$ (3)	$2^{3}B_{u}(2)$
24	10498	$^{13}B_u$ (48)	$2^{3}B_{u}$ (47) $1^{3}D$ (2)	$2^{5}A_{g}$ (3)	15D (1)	
25 26	11440	$1^{\circ}A_{u}$ (92) $2^{5}A$ (06)	$1^{\circ}B_{g}(2)$ $2^{5}P(2)$	$1^{\circ}A_{g}$ (1) $1^{3}D$ (1)	$1^{\circ}B_u$ (1)	
20 27	11441	$\frac{2}{15} \frac{A_g}{A_g} (90)$	$2 D_u (2)$	$1 D_u (1)$		
28	11444	$1^{5}A_{u}$ (98)				
29	11452	$2^{3}A_{a}$ (45)	$1^{3}A_{a}$ (44)	$2^{3}B_{a}$ (5)	$1^{5}B_{a}$ (3)	
30	11459	$1^{5}A_{a}^{g}$ (56)	$2^{5}A_{u}^{g}$ (33)	$2^{5}B_{a}^{g}(4)$	$1^{3}A_{u}^{g}(2)$	$2^{3}B_{\mu}$ (2)
31	11461	$2^5 A_u^{(63)}$	$1^{5}A_{g}(33)$	$2^{5}B_{g}^{3}(2)$	- ()	- ()
32	11461	$2^5 A_u$ (63)	$1^5 A_g (34)$	$2^{5}B_{g}(2)$		
33	13784	$1^{5}_{2}B_{u}$ (49)	$2^{3}B_{g}$ (47)	$1^{3}A_{g}(2)$		
34	13784	$1^{5}B_{u}$ (49)	$2^{3}B_{g}$ (47)	$1^{3}A_{g}(2)$	- 2	
35	13794	$1^{3}B_{u}$ (46)	$2^{5}B_{g}$ (45)	$2^{5}B_{u}(2)$	$2^{3}B_{u}(2)$	$1^{5}A_{g}$ (1)
36 27	13795	$1^{\circ}B_{u}$ (43) $3^{3}D$ (44)	$2^{\circ}B_{g}$ (42) $2^{5}D$ (42)	$2^{6}B_{u}$ (5) $1^{3}D$ (5)	$2^{5}B_{u}$ (5) $2^{5}D$ (5)	$1^{\circ}A_{g}$ (1)
38	13805	2 3 3 3 3 44	$2^{5}B_{u}$ (43) $2^{5}B_{c}$ (46)	1 13 13 13 13 13 13 13	$2^{5}B_{g}(3)$	
39	13808	$1^{5}B_{a}$ (49)	$1^{3}B_{a}$ (49)	$1 D_u (2)$	$2 D_g(2)$	
40	13808	$1^{5}B_{a}$ (49)	$1^{3}B_{a}$ (49)			
41	17008	$2^{3}B_{u}^{9}$ (39)	$2^{5}B_{q}^{9}(38)$	$2^5 A_u$ (8)	$2^{3}A_{u}$ (6)	$2^{5}A_{q}$ (3)
42	17022	$1^5 B_g$ (42)	$2^{3}B_{g}$ (39)	$1^{5}A_{u}$ (8)	$1^{3}A_{g}$ (4)	$2^{3}A_{g}^{3}(4)$
43	17051	$2^5 B_u$ (29)	$1^{3}\mathrm{B}_{u}$ (29)	$2^5 A_u$ (19)	$2^{3}A_{u}$ (14)	$2^{5}A_{g}$ (5)
44	17058	$1^{5}B_{u}$ (29)	$1^{3}B_{g}$ (29)	$1^{5}A_{u}$ (20)	$2^{3}A_{g}$ (13)	$1^{3}A_{g}$ (7)
45	17126	$1^{3}A_{u}$ (49)	$1^{3}A_{g}$ (25)	$2^{3}A_{g}$ (23)		
46	17126	$^{15}A_u$ (48)	$1^{3}A_{g}$ (28)	$2^{3}A_{g}$ (19)	05D (1)	
47	17140	$1^{\circ}A_{g}$ (47) $1^{5}A$ (48)	$2^{\circ}A_{g}(37)$ $2^{5}A(21)$	$2^{\circ}A_{u}$ (11) $2^{3}A$ (17)	$2^{\circ}B_{g}(1)$ $2^{5}P(1)$	
40 49	17142	$1^{5}A_{g}$ (48) $1^{5}A_{f}$ (45)	$2^{3}A_{g}(31)$ $2^{3}A_{g}(23)$	$\begin{array}{c} 2 & A_u & (17) \\ 1^3 A & (21) \end{array}$	$2^{3}B_{g}(1)$	$1^{5}B$ (3)
49 50	17162	$2^{5}A_{u}$ (44)	$2^{3}A_{y}$ (29)	$2^{5}A_{a}$ (14)	$2^{3}B_{u}$ (5)	$2^{5}B_{a}$ (4)
51	17193	$1^{5}A_{u}$ (28)	$1^{5}B_{u}$ (21)	$1^{3}B_{a}$ (20)	$2^{3}A_{a}$ (16)	$1^{3}A_{a}$ (11)
52	17208	$2^5 A_u$ (29)	$2^{3}A_{u}^{a}(23)$	$2^5 B_u^9$ (20)	$1^{3}B_{u}^{9}$ (19)	$2^5 A_q^{(6)}$
53	18081	$1^5 A_u$ (45)	$2^{3}A_{g}$ (23)	$1^{3}A_{g}$ (20)	$2^{3}B_{g}(6)$	$1^{5}B_{g}^{5}(4)$
54	18096	$2^{3}_{2}A_{u}$ (44)	$2^{5}_{2}A_{u}$ (29)	$1^{5}_{a}A_{g}$ (14)	$2^{5}B_{g}$ (6)	$2^{3}B_{u}$ (4)
55	19490	$2^{5}B_{u}$ (48)	$2^{5}B_{g}$ (48)	$1^{5}A_{g}$ (1)	$2^{5}A_{g}$ (1)	
56	19490	$2^{5}B_{u}$ (48)	$2^{5}B_{g}$ (48)	$1^{9}A_{g}(1)$	$2^{\circ}A_{g}(1)$	
57	19529	$1^{\circ}B_{g}$ (32)	$1^{\circ}B_{u}$ (32)	$2^{\circ}B_{g}$ (16)	$1^{\circ}B_{g}$ (16) $2^{3}D$ (17)	13D (1)
00 50	19990	$1^{\circ} D_g (33)$ $2^5 B (24)$	$1^{-}D_{u} (32)$ $2^{5}B (24)$	$1^{-}D_{g}$ (10) $9^{3}B$ (99)	$2^{-}D_{g}$ (10) $1^{3}P$ (99)	$1^{5}D_{u}(1)$ $1^{5}B(1)$
59 60	19532	$^{2} B_{g} (24)$ $2^{5} B_{a} (24)$	$^{2} B_{u} (24)$ $2^{5} B_{u} (24)$	$^{2} B_{u} (23)$ $2^{3}B_{u} (24)$	1 $^{13}B_{u}$ (23)	$\mathbf{L} \mathbf{D} u$ (L)
61	19538	$1^{5}B_{u}$ (41)	$1^{5}B_{a}$ (41)	$2^{3}B_{a}$ (8)	$1^{3}B_{a}$ (8)	
62	19538	$1^5 B_u^{(40)}$	$1^{5}B_{q}^{9}$ (40)	$2^{3}B_{q}^{9}$ (9)	$1^{3}B_{q}^{9}$ (9)	
63	22869	$2^5 A_g$ (49)	$1^{5} A_{g}^{\prime} (30)$	$2^5 A_u$ (17)	$2^{5}B_{g}(1)$	
64	22869	$2^5 A_g$ (49)	$1^5 A_g$ (30)	$2^5 A_u$ (17)	$2^5 B_g$ (1)	

The first column contains labels assigned to the states.

То	From	Osc. strength ($\times 10^{-5}$)	$\Delta \mathbf{E} \ [\mathbf{cm}^{-1}]$	То	From	Osc. strength ($\times 10^{-5}$)	$\Delta \mathbf{E} \ [\mathbf{cm}^{-1}]$
41	53	17.2748	1073	45	60	1.8952	2406
42	54	15.5257	1074	46	59	1.5652	2406
43	50	2.2510	111	12	19	3.0679	2411
41	45	9.0094	118	11	17	3.2569	2412
42	48	744.1568	120	7	18	2.7551	2422
41	47	6.0287	132	8	20	3.2557	2423
41	49	93.9031	139	44	59	1.1227	2474
42	50	29.3810	140	50	53	4.1249	919
43	51	363.8878	142	24	25	7.8430	942
44	52	543.1012	150	23	26	6.0518	948
52	57	1.3791	2321	49	54	1.5615	949
51	59	1.4847	2339	23	29	1.5422	959
50	58	1.7933	2368	22	29	17.2553	970
50	62	1.2623	2376	21	30	13.2755	992
49	60	2.1010	2385				

Table S26: Transitions with non-negligible oscillator strengths.

S11.3 Diamond-shaped cluster in calculations with CAS(4,8)

S11.3.1 Model with full first coordination sphere - geometry b

Table S27: Energetics of the diamond-shaped $[NpO_2]_2^{2+}$ molecule calculated with CAS(4,8)PT2/SO-RASSI. For each molecule, the energy differences are calculated with respect to the lowest lying state. The first column contains labels assigned to the states.

Label	$\Delta \mathbf{E} \ [\mathbf{cm}^{-1}]$	Com	positi	on in	\mathbf{terms}	of the	spin-	free w	avefur	nctions	(weight in %)
1	0	$2^5 A$	(40)	$4^{5}A$	(32)	$1^{5}A$	(23)	$8^{5}A$	(2)	$6^{5}A$	(1)
2	0	$2^5 A$	(40)	$4^{5}A$	(32)	$1^{5}A$	(23)	$8^{5}A$	(2)	$6^{5}A$	(1)
3	4900	$3^{5}A$	(44)	$1^{3}A$	(20)	$2^{3}A$	(13)	$4^{3}A$	(9)	$3^{3}A$	(4)
4	4911	$3^{3}A$	(40)	$1^{5}A$	(20)	$4^5 A$	(16)	$2^5 A$	(7)	$4^{3}A$	(4)
5	5736	$1^{3}A$	(33)	$3^5 A$	(17)	$1^{5}A$	(15)	$2^{3}A$	(11)	$2^5 A$	(7)
6	5736	$1^{3}A$	(38)	$3^5 A$	(20)	$2^{3}A$	(16)	$1^{5}A$	(9)	$4^{3}A$	(6)
7	5738	$1^5 A$	(26)	$1^{3}A$	(18)	$3^{3}A$	(14)	$2^5 A$	(14)	$3^5 A$	(10)
8	5740	$1^5 A$	(42)	$2^5 A$	(22)	$3^{3}A$	(18)	$4^5 A$	(5)	$1^{3}A$	(3)
9	5798	$4^5 \mathrm{A}$	(22)	$2^{3}A$	(19)	$4^{3}A$	(14)	$2^5 A$	(13)	$3^{3}A$	(13)
10	5800	$2^{3}A$	(20)	$4^{5}A$	(19)	$4^{3}A$	(17)	$3^5 A$	(14)	$3^{3}A$	(12)
11	5810	$4^{3}A$	(28)	$4^{5}A$	(21)	$3^{3}A$	(14)	$2^{3}A$	(12)	$2^5 A$	(11)
12	5811	$4^{3}A$	(25)	$4^{5}A$	(24)	$3^{3}A$	(16)	$2^5 A$	(12)	$2^{3}A$	(9)
13	7390	$6^5 A$	(46)	$8^5 A$	(40)	$1^5 A$	(9)	$2^5 A$	(1)		(-)
14	7390	$6^5 A$	(46)	$8^5 A$	(40)	$1^5 A$	(9)	$2^5 A$	(1)		
15	7423	$5^5 A$	(49)	$7^5 A$	(45)	$3^5 A$	(3)		(-)		
16	7423	$5^5 A$	(49)	$7^5 A$	(45)	$3^5 A$	(3)				
17	7540	7 ⁵ A	(23)	5 ⁵ A	(22)	8 ³ A	(20)	$6^3 A$	(20)	$7^{3}A$	(7)
18	7542	6 ³ A	(18)	5 ⁵ A	(13)	6 ⁵ A	(13)	$7^{5}A$	(11)	8 ⁵ A	(11)
10	7543	$7^3 \Lambda$	(15)	8 ⁵ A	(10) (14)	8 ³ A	(13)	$5^3 A$	(11)	$7^5 \Lambda$	(12) (13)
20	7545	85 A	(10) (24)	65 A	(14)	53 A	(10) (21)	$7^{3}\Lambda$	(15) (16)	6 ³ A	(13)
20	9790	75 A	(24) (41)	6 ³ A	(22) (18)	13 A	(21) (13)	$7^{3}\Lambda$	(10)	8 ³ Δ	(4) (8)
21	0817	\$5A	(33)	7 ³ A	(10)	531	(13) (17)	65 A	(3) (19)	15 A	(0) (10)
22	9017 0866	53 A	(23)	65 A	(19) (26)	73 A	(11)	95 A	(12) (11)	63 A	(10)
20	9800	5 A	(21)	07	(20)	63 A	(11)	65 A	(11)	0 A 0 ³ A	(0)
24 25	9002 11654	0 A 05 A	(40)	0 A 15 A	(29) (41)	65 A	(6)	53 A	(3)	2 A 15 Λ	(3)
20	11054	2 A 25 A	(40)	4 A 75 A	(41)	0 A	(0)	JA	(1)	IA	(1)
20	11055	5'A 95 A	(94)	75 A	(4)						
21	11000	5'A 15 A	(94)	15 A	(4)	-05 A	(1c)	o5 A	(0)	c5 A	(1)
20	11070	15 A	(39)	4 A 45 A	(33)	$2^{\circ}A$ 25Λ	(10)	0'A	(9)	65 A	(1) (1)
29	11070	1° A 43 A	(39)	4° A	(33)	2° A 23 A	(10)	0° A 03 A	(9)	0° A 05 A	(1)
30	11082	4° A 15 A	(43)	2° A	(37)	3° A	(0)	8° A	(3)	2° A 13 A	(2) (11)
31 20	11090	1°A 13A	(22)	2° A 43 A	(10)	2° A 15 A	(10)	4°A	(12)	1°A 95 A	(11)
32	11700	1°A 54	(23)	4° A	(19)	1°A	(12)	2°A 13 A	(10)	$Z^{\circ}A$	(8)
33	13134	5° A	(46)	$6^{\circ}A$	(18)	8° A	(17)	1°A 13 A	(9)	7°A 73 A	(4)
34	13134	5°A	(47)	6°A	(18)	8°A	(17)	1°A 554	(9)	$7^{\circ}A$	(4)
35	13142	5°A	(46)	8°A	(39)	1°A 15A	(8)	$5^{\circ}A$	(1)		
36	13146	5° A	(47)	$8^{\circ}A$	(40)	1°A	(9)	a3 1	$\langle \alpha \rangle$	03.4	(=)
37	13266	6°A	(38)	7°A	(34)	7°A 73 A	(8)	$6^{\circ}A$	(0)	8°A	(5)
38	13269	7°A	(23)	$6^{\circ}A$	(23)	7°A	(21)	8 ³ A	(13)	$6^{3}A$	(11)
39	13273	7°A	(38)	8 ⁵ A	(20)	$6^{\circ}A$	(19)	$6^{\circ}A$	(9)	7 ³ A	(7)
40	13274	7 ³ A	(23)	$6^{3}A$	(23)	73A	(20)	$6^{3}A$	(13)	8 ³ A	(13)
41	16415	7 ³ A	(37)	8 ³ A	(20)	$6^{3}A$	(15)	1°A	(9)	$3^{3}A$	(7)
42	16440	7°A	(40)	8 ³ A	(30)	1 ³ A	(9)	$3^{3}A$	(7)	$7^{3}A$	(4)
43	16598	5°A	(48)	$6^{\circ}A$	(47)	8°A	(1)				
44	16633	$5^{\circ}A$	(48)	$6^{3}A$	(27)	8 ³ A	(21)				
45	17407	$1^{5}A$	(21)	2^{5} A	(21)	$2^{3}A$	(16)	$1^{3}A$	(13)	3^{5} A	(6)
46	17409	$2^{5}A$	(20)	15A	(20)	2^{3} A	(16)	1^{3} A	(14)	$3^{5}A$	(6)
47	17409	$1^{3}A$	(25)	3^{5} A	(16)	$1^{5}A$	(14)	2^{5} A	(12)	$3^{3}A$	(11)
48	17411	$1^{3}A$	(24)	3^{5} A	(15)	$1^{5}A$	(14)	2^{5} A	(13)	$3^{3}A$	(10)
49	17446	$4^{3}A$	(19)	$4^{5}A$	(17)	$2^{3}A$	(17)	$3^{5}A$	(16)	$3^{3}A$	(14)
50	17449	$4^{3}A$	(21)	$3^{5}A$	(18)	$2^{3}A$	(17)	$4^{5}A$	(14)	$3^{3}A$	(13)

Label	$\Delta \mathbf{E} \ [\mathbf{cm}^{-1}]$	Compos	tion in	terms	of the	spin-	free w	avefu	nction	s (weight in $\%$)
51	17460	$4^{5}A$ (27)) $4^{3}A$	(23)	$3^{3}A$	(16)	$2^{5}A$	(9)	$3^{5}A$	(7)
52	17464	$4^{5}A$ (29)) 4 ³ A	(20)	$3^{3}A$	(18)	$2^5 A$	(9)	$3^5 A$	(7)
53	18447	$3^{5}A$ (35)) 1 ³ A	(12)	$2^{3}A$	(12)	$4^{3}A$	(7)	$3^{3}A$	(6)
54	18474	$3^{3}A$ (31)) 4 ⁵ A	(14)	$1^{5}A$	(12)	$8^{5}A$	(10)	$3^{5}A$	(6)
55	18896	$6^5 A$ (45)) 8 ⁵ A	(40)	$1^5 A$	(8)	$2^5 A$	(4)	$4^5 \mathrm{A}$	(1)
56	18896	$6^5 A$ (45)	$) 8^{5}A$	(40)	$1^{5}A$	(8)	$2^5 A$	(4)	$4^{5}A$	(1)
57	19061	$5^{5}A$ (47)) 7 ⁵ A	(47)	$8^{3}A$	(1)	$6^{3}A$	(1)		
58	19061	$5^{5}A$ (48)) $7^{5}A$	(47)	$8^{3}A$	(1)	$6^{3}A$	(1)	$3^5 A$	(1)
59	19114	$8^{5}A$ (25)	$) 6^{5}A$	(24)	$7^{3}A$	(23)	$5^{3}A$	(22)	$6^{3}A$	(2)
60	19116	$6^{3}A$ (16)	$) 6^{5}A$	(15)	$8^5 A$	(14)	$5^{3}A$	(11)	$5^5 A$	(11)
61	19117	$7^5 A$ (16)) 8 ³ A	(15)	$7^{3}A$	(14)	$5^{5}A$	(13)	$8^{5}A$	(12)
62	19119	$7^{5}A$ (25)) 8 ³ A	(24)	$5^{5}A$	(23)	$6^{3}A$	(21)	$7^{3}A$	(1)
63	23307	$2^{5}A$ (37)) 4 ⁵ A	(31)	$1^5 A$	(19)	$8^{5}A$	(6)	$6^5 A$	(4)
64	23307	$2^{5}A$ (37)	$) 4^{5}A$	(31)	$1^5 A$	(19)	$8^{5}A$	(6)	$6^5 A$	(4)

Table S28: Transitions with non-negligible oscillator strengths.

То	From	Osc. strength ($\times 10^{-5}$)	$\Delta \mathbf{E} \ [\mathbf{cm}^{-1}]$	То	From	Osc. strength ($\times 10^{-5}$)	$\Delta \mathbf{E} \ [\mathbf{cm}^{-1}]$
52	60	2.0944	1652	22	32	1.3244	1888
51	59	1.2788	1654	37	49	1.7062	4180
51	61	1.0667	1657	38	50	1.6832	4180
50	61	2.7621	1668	39	51	1.7662	4187
49	60	1.1991	1670	40	52	1.8944	4190
49	62	2.1688	1673	57	63	1.0766	4246
48	59	5.1408	1703	58	64	1.0831	4246
47	59	3.0043	1705	57	63	2.3750	4246
48	61	5.8523	1706	57	64	1.9293	4246
45	59	2.7339	1707	58	63	1.9410	4246
46	60	7.8175	1707	58	64	2.3897	4246
47	60	2.9530	1707	15	28	2.3120	4252
47	61	2.0025	1708	16	29	2.3119	4252
45	61	2.3462	1710	36	47	1.4696	4263
46	62	1.6772	1710	13	26	1.3116	4265
47	62	3.2402	1710	13	27	1.0262	4265
45	62	5.5806	1712	14	26	1.0232	4265
11	17	1.8176	1730	14	27	1.3134	4265
12	18	1.9549	1731	35	48	1.6119	4269
11	19	1.0185	1733	34	45	1.3577	4273
10	19	1.2276	1743	33	46	1.3736	4275
9	18	1.1479	1744	30	42	1.6606	4758
10	20	2.0361	1745	25	41	1.5008	4761
7	17	3.3861	1802	32	43	1.3171	4893
8	18	3.5966	1802	3	22	1.0488	4917
8	19	4.4553	1803	3	22	2.0094	4917
5	17	5.1432	1804	31	44	1.0274	4943
6	17	2.3997	1804	4	23	1.1914	4955
7	18	1.5200	1804	3	23	1.2323	4966
7	19	4.8301	1805	4	24	1.1709	4971
8	20	2.8362	1805	4	24	2.1942	4971
5	18	4.2717	1806	3	24	1.1064	4982
6	18	1.6206	1806	26	55	1.0778	7241
5	19	1.1810	1807	27	56	1.0809	7241
7	20	1.2520	1807	1	15	1.8893	7423
24	31	1.5055	1808	1	16	1.4599	7423
6	20	6.4798	1809	2	15	1.4591	7423
44	53	2.2384	1814	2	16	1.8906	7423
24	32	3.2965	1823	1	15	1.6474	7423
23	31	3.9313	1824	1	16	1.1988	7423
44	54	7.6799	1841	2	15	1.1981	7423
43	53	7.7835	1849	2	16	1.6484	7423
21	25	5.0584	1864	12	37	1.0856	7455
22	30	3.9665	1865	11	38	1.2190	7459
43	54	2.1414	1876	9	40	1.1393	7476

S11.3.2 Model without explicit solvent

Table S29: Energetics of the diamond-shaped $[NpO_2]_2^{2+}$ molecule calculated with CAS(4,8)PT2/SO-RASSI. For each molecule, the energy differences are calculated with respect to the lowest lying state. The first column contains labels assigned to the states.

_	Laber		Compositio	n in terms	of the spin-	free wavelui	ictions (weight in 76)
	1	0	$2^{5}A_{g}$ (49)	$1^{5}A_{g}$ (31)	$2^{5}A_{u}$ (17)		
	2	0	$2^{5}A_{q}$ (49)	$1^{5}A_{q}$ (31)	$2^{5}A_{u}$ (17)		
	3	4856	$1^{5}A_{u}$ (49)	$2^{3}A_{a}(25)$	$1^{3}A_{a}$ (24)		
	4	4870	$2^{3}A_{u}(49)$	$2^{5}A_{u}^{9}$ (31)	$1^{5}A_{a}^{9}(17)$		
	5	5732	$1^{3}\Delta$ (48)	$1^{3}\Delta$ (32)	$1^{5}\Lambda$ (17)		
	5	5752	13_{A} (40)	13_{A} (32)	$1 \Lambda_u (17)$ $15 \Lambda (17)$	n^{3} (1)	
	6	5732	$1^{\circ}A_{g}$ (48)	$1^{\circ}A_{u}$ (33)	$1^{\circ}A_{u}$ (15)	$2^{\circ}A_{g}(1)$	
	7	5739	$1^{5}A_{g}$ (45)	$2^{5}A_{g}$ (41)	$2^{3}A_{u}$ (7)	$2^{5}A_{u}(2)$	
	8	5740	$1^{5}A_{g}$ (44)	$2^{5}A_{g}$ (43)	$2^{3}A_{u}$ (5)	$2^{5}A_{u}$ (4)	
	9	5742	$2^{3}A_{g}$ (48)	$1^{5}A_{u}$ (31)	$1^{3}A_{u}$ (17)		
	10	5743	$2^{3}A_{q}$ (48)	$1^{5}A_{u}$ (32)	$1^{3}A_{u}$ (15)	$1^{3}A_{q}(1)$	
	11	5753	$2^{5} A_{u}^{3} (45)$	$2^{3}A_{u}(44)$	$2^{5}A_{a}(5)$	$1^{5} A_{a}^{5} (4)$	
	19	5755	$2^5 A_{}^{(46)}$	$2^{3}A_{}(42)$	$2^{5}A_{-}(7)$	$1^{5}A_{-}^{9}(2)$	
	12	8135	$15^{15}R$ (40)	$2^{5}R_{(42)}$	$\frac{2}{15}$ $\frac{15}{2}$ (2)	1 ng (2)	
	1.0	0100	$15D_u$ (49)	$2 D_g (47)$ 25D (47)	$1 \Lambda_g (2)$ $15 \Lambda_{(2)}$		
	14	0100	$1^{\circ} D_u$ (49)	$2^{\circ} D_g (47)$	$1^{\circ}A_{g}(2)$		
	15	8147	$1^{9}B_{g}$ (49)	$2^{5}B_{u}$ (49)	$1^{3}A_{u}$ (1)		
	16	8147	$1^{5}B_{g}$ (49)	$2^{\circ}B_{u}$ (49)	$1^{5}A_{u}$ (1)		_
	17	8181	$1^{3}B_{g}$ (23)	$2^{5}B_{u}$ (22)	$1^{5}B_{g}$ (22)	$2^{3}B_{g}$ (20)	$1^{3}B_{u}$ (4)
	18	8181	$1^{3}B_{u}$ (23)	$1^{5}B_{u}$ (21)	$2^5 B_q$ (21)	$1^{3}B_{q}$ (14)	$2^{3}B_{u}$ (10)
	19	8183	$2^{3}B_{a}(23)$	$2^{5}B_{u}(21)$	$1^{5}B_{a}(21)$	$2^{3}B_{u}(14)$	$1^{3}B_{a}(10)$
	20	8183	$2^{3}B_{}^{3}$ (23)	$1^{5}B_{u}(22)$	$2^{5}B_{-}^{2}(22)$	$1^{3}B_{u}(20)$	$2^{3}B_{-}(4)$
	20	10592	$2^{5}D_{u}(20)$	$1^{3}D_{u}(22)$	$1^{3}\Lambda$ (7)	$n^{3}\Lambda$ (2)	2 Dg (4)
	21	10525	2 3 3 3 1 1 1 1 1	$2 D_g (42)$	$1 \Lambda_{g}(1)$ $15 \Lambda_{g}(2)$	$\frac{2}{15}$ R_{g} (5)	13D (1)
	22	10551	$2^{\circ}B_{u}$ (44)	$2^{\circ}B_{g}$ (39)	$1^{\circ}A_{g}(0)$	$1^{\circ}B_g$ (5)	$1^{\circ}B_{g}$ (1)
	23	10560	$1^{3}B_{u}$ (47)	$1^{5}B_{u}$ (47)	$2^{3}_{2}A_{g}$ (4)		2
	24	10563	$1^{3}B_{g}$ (45)	$1^{\circ}B_{g}$ (43)	$2^{\circ}B_{g}(4)$	$1^{3}A_{u}$ (4)	$2^{3}B_{u}$ (1)
	25	11523	$1^{5}A_{u}$ (98)	$2^{5}B_{u}$ (1)			
	26	11523	$1^{5}A_{u}$ (98)	$2^{5}B_{u}$ (1)			
	27	11524	$2^5 A_a$ (94)	$1^{5}B_{u}(3)$	$1^{3}B_{\mu}$ (1)		
	28	11537	$1^{3}A_{u}^{9}(64)$	$1^{5}A_{a}(18)$	$2^{5}A_{u}(11)$	$1^{3}B_{a}$ (3)	$2^{5}B_{a}$ (1)
	29	11544	$2^{5}A_{}^{}(62)$	$1^{5}A_{-}^{9}$ (33)	$2^{5}B_{-}(2)$	9 (-)	9 ()
	30	11544	$2^{5}\Lambda$ (63)	$1^{5}\Lambda$ (33)	$2^{5}B$ (2)		
	91	11546	15Λ (28)	13A (20)	$2 D_g (2)$ $25 \Lambda (22)$	05D (2)	93D (2)
	31	11540	$1^{\circ}A_{g}$ (36)	$1^{3}A_{u}$ (29)	$2^{3} A_{u} (23)$	$2^{2}D_{g}(3)$	$2^{\circ} \mathbf{D}_{u}$ (3)
	32	11548	$2^{\circ}A_{g}$ (45)	$1^{\circ}A_{g}$ (43)	$2^{\circ}B_{g}(6)$	$2^{\circ}B_{u}(3)$	
	33	13877	$1^{5}B_{g}$ (48)	$2^{3}B_{g}$ (46)	${}^{13}A_g$ (2)	${}^{13}B_u$ (1)	
	34	13878	$1^{3}B_{g}$ (48)	$2^{\circ}_{2}B_{g}$ (46)	$1^{\circ}_{2}A_{g}(2)$	$1^{3}B_{u}(1)$	0
	35	13885	$1^{3}B_{u}$ (40)	$2^{5}B_{g}$ (40)	$1^{5}B_{u}$ (7)	$2^{3}B_{u}$ (4)	$1^{3}B_{g}$ (3)
	36	13887	$1^{3}B_{u}$ (31)	$2^5 B_q$ (31)	$1^{5}B_{u}$ (16)	$2^{3}B_{u}$ (9)	$1^{3}B_{q}$ (6)
	37	13893	$2^{3}B_{u}$ (33)	$1^5 B_u$ (31)	$1^{3}B_{u}$ (14)	$2^5 B_a$ (14)	$2^5 B_u$ (3)
	38	13894	$2^{3}B_{u}(41)$	$1^{5}B_{u}$ (38)	$1^{3}B_{u}$ (6)	$2^{5}B_{a}^{5}$ (6)	$2^{5}B_{u}(4)$
	39	13895	$2^{5}B_{}(45)$	$1^{3}B_{-}(41)$	$2^{3}B_{u}(5)$	$2^{5}B_{-}(2)$	$1^{3}B_{12}$ (2)
	40	13805	$2^{5}B$ (44)	$1^{3}B$ (43)	$2^{3}B^{-}(3)$	$1^{5}B$ (2)	$2^{5}B$ (1)
	40	17119	$2 D_u (44)$ 25 D (27)	$1^{3}D_{g}$ (43)	$^{2} D_{u} (0)$ $^{13}D (11)$	$1 D_u (2)$ $05 \Lambda (2)$	$2^{3} D_{g}$ (1) $2^{3} \Lambda$ (7)
	41	17110	$_{2}$ D_{g} (31)	$_{\Delta}$ D _u ($_{\Delta}$ 0)	15A (7)	$_{13A}^{(0)}$	$2 \Lambda_u (1)$
	42	17118	$2^{5}B_{u}$ (42)	$2^{\circ}B_{g}$ (39)	$1^{6}A_{u}(1)$	$1^{6}A_{g}$ (5)	$2^{6}A_{g}$ (4)
	43	17165	$1^{5}B_{u}$ (31)	$1^{3}B_{u}$ (31)	$2^{5}A_{u}$ (18)	$2^{3}A_{u}$ (12)	$2^{3}A_{g}$ (6)
	44	17178	$1^{\circ}B_{g}$ (28)	$1^{\circ}A_{u}$ (20)	$1^{3}B_{g}$ (20)	$2^{3}A_{g}$ (13)	$2^{3}B_{u}$ (8)
	45	17254	$1^{3}A_{u}$ (46)	$2^{3}A_{g}$ (23)	$1^{3}A_{g}$ (21)	$1^{5}A_{g}$ (3)	$2^{5}A_{g}(2)$
	46	17255	$1^{3}A_{u}$ (47)	$1^{3}A_{q}$ (27)	$2^{3}A_{q}$ (19)	$1^{5}A_{q}(1)$	$2^{5}A_{q}(1)$
	47	17260	$1^{5}A_{a}$ (43)	$2^5 A_a$ (34)	$2^{3}A_{u}(11)$	$1^{3}A_{u}(2)$	$2^{3}A_{a}(1)$
	48	17262	$1^{5} A_{a}^{3} (44)$	$2^{5} A_{a}^{2} (36)$	$2^{3}A_{u}(10)$	$2^{5}B_{a}(1)$	$1^{3}A_{u}^{3}$ (1)
	49	17267	$1^{5}A_{}(47)$	$1^{3}A_{-}(23)$	$2^{3}A_{-}(22)$	$2^{3}B_{-}(3)$	$2^{5}B_{-}(2)$
	50	17984	95Δ (42)	$2^{3}\Delta$ (26)	$\frac{2}{25} \Delta (22)$	$2^{-1} B_{g}(0)$	$2^{3}B_{2}(2)$
	50 E1	17917	$\frac{2}{15}$ $\frac{15}{100}$	$\frac{2}{15}$ n_u (30)	a = ng (0) $a^3 \Lambda (1c)$	$\frac{2}{13} \frac{13}{12} \frac{13}{11} \frac{13}$	$2 D_u (2)$ 13 (11)
	51	1/31/	$1^{\circ}A_{u}$ (28)	$1^{\circ}B_{g}$ (21)	$2^{-}A_{g}$ (10)	$1^{-}B_{g}$ (15)	$1^{-}Ag$ (11)
	52	17330	$2^{\circ}A_{u}$ (30)	$2^{\circ}A_{u}$ (25)	$1^{\circ}B_{u}$ (18)	$1^{\circ}B_{u}$ (18)	$2 \operatorname{A}_g$ (5)
	53	18221	$^{13}A_u$ (44)	$2^{\circ}_{2}A_{g}$ (23)	$1^{\circ}_{2}A_{g}$ (19)	$2^{\circ}_{J}B_{g}$ (7)	$2^{3}B_{u}$ (5)
	54	18243	$2^{3}_{-}A_{u}$ (43)	$2^{5}A_{u}$ (28)	$1^{5}_{-}A_{g}$ (14)	$2^{5}B_{g}$ (7)	$2^{3}B_{u}$ (4)
	55	19600	$1^{5}B_{u}$ (48)	$2^5 B_g$ (47)	$1^{5}A_{g}(2)$	$2^{5}A_{g}(1)$	
	56	19600	$1^{5}B_{u}$ (48)	$2^5 B_q$ (47)	$1^{5}A_{a}(2)$	$2^5 A_a$ (1)	
	57	19655	$1^{5}B_{a}^{-}(46)$	$2^{5}B_{u}^{3}$ (46)	$2^{3}B_{a}^{3}$ (3)	$1^{3}B_{a}^{3}$ (2)	
	58	19655	$1^{5}B_{a}$ (46)	$2^{5}B_{u}$ (46)	$2^{3}B_{a}$ (3)	$1^{3}B_{a}(2)$	
			-9 (+9)	- u (+~)			

Label $\Delta E [cm^{-1}]$ Composition in terms of the spin-free wavefunctions (weight in %)

Label	$\Delta \mathbf{E} \ [\mathbf{cm}^{-1}]$	Compositi	on in terms	of the spin-	free wavefu	nctions (weight in $\%$)
59	19666	$2^{5}B_{g}$ (24)	$1^{3}B_{u}$ (24)	$1^{5}B_{u}$ (24)	$2^{3}B_{u}$ (14)	$1^{3}B_{g}$ (10)
60	19666	$1^{3}B_{u}$ (24)	$2^5 B_g$ (23)	$1^{5}B_{u}$ (23)	$2^{3}B_{u}$ (13)	$1^{3}B_{g}$ (11)
61	19669	$2^5 B_u$ (26)	$1^5 B_g (26)$	$2^{3}B_{g}$ (21)	$2^{3}B_{u}$ (11)	$1^{3}B_{g}$ (10)
62	19670	$2^5 B_u$ (27)	$1^5 B_g$ (27)	$2^{3}B_{g}$ (22)	$1^{3}B_{g}$ (12)	$2^{3}B_{u}$ (9)
63	23029	$2^5 A_g$ (48)	$1^{5} A_{g} (30)$	$2^5 A_u$ (17)	$2^5 B_g$ (1)	$1^{5}B_{u}$ (1)
64	23029	$2^5 A_g (48)$	$1^{5} A_{g}$ (30)	$2^5 A_u$ (17)	$2^{5}B_{g}(1)$	$1^{5}B_{u}$ (1)

Table S30: Transitions with non-negligible oscillator strengths.

То	From	Osc. strength ($\times 10^{-5}$)	$\Delta \mathbf{E} \ [\mathbf{cm}^{-1}]$	То	From	Osc. strength ($\times 10^{-5}$)	$\Delta \mathbf{E} \ [\mathbf{cm}^{-1}]$
21	28	3.2602	1014	46	59	1.6630	2411
21	31	11.7623	1023	45	60	1.9292	2412
41	53	20.3831	1109	11	17	2.6693	2428
42	54	16.5872	1125	12	19	3.0913	2428
43	50	2.4682	119	9	18	4.5099	2439
42	46	20.8049	137	10	20	4.0084	2440
41	45	1.6595	142	44	59	1.3172	2488
42	48	419.5712	144	43	61	1.1649	2504
41	47	2.9098	148	50	53	3.4635	937
43	51	193.6615	152	48	53	1.4088	959
44	52	722.8882	152	24	27	7.4651	961
41	49	77.0994	155	49	54	1.1689	976
42	50	36.8494	166	23	28	7.2878	977
52	61	1.9496	2339	24	32	1.5833	985
51	59	1.7409	2349	23	31	2.8701	986
_50	62	2.7448	2386	22	32	18.8958	997

References

- Alain Cousson, Sylvie Dabos, Hicham Abazli, Françoise Nectoux, Monique Pagés, and Gregory Choppin. Crystal structure of a neptunyl cation-cation complex (NpO₂⁺) with mellitic acid: Na₄(NpO₂)₂Cl₁₂O₁₂ · 8H₂O. J. Less-Common Met., 99(2):233-240, 1984.
- [2] Alain Cousson. Structure du bis(benzénetétracarboxylate-1,2,4,5) de pentaneptunyle(V) et de triammonium á sept molécules d'eau. Acta Cryst., C41:1758–1761, 1985.
- [3] R. Copping, V. Mougel, C. Den Auwer, C. Berthon, P. Moisy, and M. Mazzanti. A tetrameric neptunyl(V) cluster supported by a Schiff base ligand. *Dalton Trans.*, 41:10900–10902, 2012.
- [4] G. B. Jin, S. Skanthakumar, and L. Soderholm. Cation–cation interactions: crystal structures of neptunyl(V) selenate hydrates, $(NpO_2)_2(SeO_4)(H_2O)_n$ (n = 1, 2, and 4). Inorg. Chem., 50:52035–52214, 2011.
- [5] G. B. Jin, S. Skanthakumar, and L. Soderholm. Two new neptunyl(V) selenites: a novel cation– cation interaction framework in (NpO₂)₃(OH)(SeO₃)(H₂O)₂·H₂O and a uranophane-type sheet in Na(NpO₂)(SeO₃)(H₂O). *Inorg. Chem.*, 50(13):6297–6303, 2011.
- [6] Shuao Wang, Eric M. Villa, Juan Diwu, Evgeny V. Alekseev, Wulf Depmeier, and Thomas E. Albrecht-Schmitt. Role of anions and reaction conditions in the preparation of uranium(VI), neptunium(VI), and plutonium(VI) borates. *Inorg. Chem.*, 50(6):2527–2533, 2011.
- [7] I. A. Charushnikova, M. S. Grigoriev, and N. N. Krot. Synthesis and crystal structure of new U(VI) and Np(VI) benzoates, PK₁₁(AnO₂)₂₃(OOCC₆H₅)₅₇(H₂O)_{18+x}. Radiochemistry, 52(2):138–144, 2010.
- [8] Tom Ziegler and Arvi Rauk. A theoretical study of the ethylene-metal bond in complexes between copper(1+), silver(1+), gold(1+), platinum(0) or platinum(2+) and ethylene, based on the Hartree-Fock-Slater transition-state method. *Inorg. Chem.*, 18:1558–1565, 1979.
- [9] F.M. Bickelhaupt and E.J. Baerends. Rev. Comput. Chem., volume 15, chapter Kohn-Sham density functional theory: predicting and understanding chemistry, pages 1–86. Wiley-VCH, 2000.
- [10] Tom Ziegler and Arvi Rauk. Carbon monoxide, carbon monosulfide, molecular nitrogen, phosphorus trifluoride, and methyl isocyanide as .sigma. donors and .pi. acceptors. a theoretical study by the Hartree-Fock-Slater transition-state method. *Inorg. Chem.*, 18:1755–1759, 1979.
- [11] Juan I. Rodríguez, Richard F. W. Badera, Paul W. Ayers, Carine Michel, Andreas W. Götz, and Carles Bo. A high performance grid-based algorithm for computing QTAIM properties. *Chem. Phys. Lett.*, 472:149–152, 2009.
- [12] Juan I. Rodríguez. An efficient method for computing the QTAIM topology of a scalar field: The electron density case. J. Comput. Chem., 34:681–686, 2012.
- [13] E. J. Baerends, T. Ziegler, and J. Autschbach *et al.* ADF2014, SCM, Theoretical Chemistry, Vrije Universiteit, Amsterdam, The Netherlands. see http://www.scm.com.

- [14] G. te Velde, F. M. Bickelhaupt, E. J. Baerends, C. Fonseca Guerra, S. J. A. van Gisbergen, J. G. Snijders, and T. Ziegle. Chemistry with ADF. J. Comput. Chem., 22(9):931–967, 2001.
- [15] C. Fonseca Guerra, J. G. Snijders, G. te Velde, and E. J. Baerends. Towards an order-N DFT method. *Theor. Chem. Acc.*, 99(6):391–403, 1998.
- [16] E. Van Lenthe and E. J. Baerends. Optimized Slater-type basis sets for the elements 1–118. J. Comput. Chem., 24(9):1142–1156, 2003.
- [17] E. van Lenthe, E. J. Baerends, and J. G. Snijders. Relativistic regular twocomponent Hamiltonians. J. Chem. Phys., 99(6):4597–4610, 1993.
- [18] E. van Lenthe, E. J. Baerends, and J. G. Snijders. Relativistic total energy using regular approximations. J. Chem. Phys., 101(11):9783–9792, 1994.
- [19] Erik van Lenthe, Andreas Ehlers, and Evert Jan Baerends. Geometry optimizations in the zero order regular approximation for relativistic effects. J. Chem. Phys., 110(18):8943–8953, 1999.
- [20] Cory C. Pye and Tom Ziegler. An implementation of the conductor-like screening model of solvation within the Amsterdam density functional package. *Theor. Chem. Acc.*, 101:396–408, 1999.
- [21] Cory C. Pye, Tom Ziegler, Erik van Lenthe, and Jaap N. Louwen. An implementation of the conductor-like screening model of solvation within the Amsterdam density functional package — Part II. COSMO for real solvents. *Can. J. Chem.*, 87:790–797, 2009.
- [22] J. N. Louwen, C. C. Pye, and E. van Lenthe *et al.* ADF2014 COSMO-RS, SCM. see http://www.scm.com.