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I. STRETCHED-EXPONENTIAL SPIN-LATTICE RELAXATION ANALYSIS

This work includes an analysis of the stretched-exponential NMR T1 behavior due to

paramagnetic impurities combined with a single-exponential relaxation process. A full de-

scription of this analysis procedure is as follows:

Tse and Hartmann [1] originally demonstrated that dilute paramagnetic impurities could

produce a relaxation function of the form S(t) = S0 exp[−(t/τ1)
1/2], a result which is valid

in the long-time limit. This behavior is due to an inhomogeneous distribution of fluctuating

fields due to random positioning of paramagnetic defects. A given nucleus thus undergoes

statistical behavior corresponding locally to ordinary exponential relaxation. This superpo-

sition of nuclear responses can be written,

S(t) = S0 exp[−(t/τ1)
1/2] = S0

∑
i

ci exp[−t/(T1s)i], (1)

where the ci are a set of weighting factors corresponding to the distribution of exponential

relaxation times (T1s)i, and the summation in Eqn. (1). represents a discrete approximation

to the continuous inhomogeneous distribution.

We examine the situation where this is combined with a second uniform relaxation pro-

cess due to metallic electrons, which alone would produce a relaxation function S(t) =

S0 exp[−(t/T1,exp)]. Since for locally exponential processes the rates will add, we obtain the

combined relaxation function,

S(t) = S0 exp[−(t/T1,exp)]
∑
i

ci exp[−t/(T1s)i]. (2)

To obtain the parameters for the summation in Eqn. (1), we chose seven (T1s)i values

which were initially logarithmically distributed over 4 orders of magnitude, and fitted to the

stretched exponential exp[−(t/τ1)
1/2] by performed a least squares minimization of the pa-

rameters (T1s)i and ci, the result being a sum of exponentials with single effective parameter

τ1 which could be varied by scaling all (T1s)i values by an identical factor.

Results of the fitting process are shown in Fig. 1, for the three temperatures near the

observed relaxation peak. As explained in the main text, we obtained τ1 from the paramag-

netic impurity density and moment determined in this work, using Eqn. (3) in the main text,

which contains the function (ωτc/(1 + ω2τ 2c ))1/2 ≡ F (ω, τc), containing τc which is the spin-

lattice relaxation time for the local moment. Since the temperature dependence of τc is not
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FIG. 1. Saturation-recovery plots for three temperatures, (a) 151 K, (b) 155 K, and (c) 160 K, with

fitted curves described in text. Stretched exponentials alone (fitted curves with exp[−(t/T1,exp)]

removed) are also shown for comparison.

known, F (ω, τc) cannot be in general be evaluated except at its maximum point (ω = τ−1
c )

where F (ω, τc) = 2−1/2. Therefore, the fitting process was carried out for temperatures only

at the apparent peak of the exponential-fitted NMR relaxation rate vs temperature. With τ1

fixed the fitting to (S0−S(t)) involved two parameters, S0 and T1,exp, for each temperature.

Since the stretched-exponential recovery function is not valid at very short times during the

initial recovery process, the fitting was limited for these curves to t ≥ 200 ms, for which

S(t)/S0 < 0.5.
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