Supplementary information Stable structures and superconductivity of At-H system at high pressure

Ziji Shao, Yanping Huang, Defang Duan*, Yanbin Ma, Hongyu Yu, Hui Xie, Da Li,

Fubo Tian, Bingbing Liu, Tian Cui*

State Key Laboratory of Superhard Materials, College of Physics, Jilin University,

Changchun, 130012, P. R. China

	1		1	2	
Structure	Parameters	Atom	X	у	Z
Space	(Å, deg)				
Pressure					
AtH ₂	a=3.6443	H1	0.00000	-0.06722	-0.36522
Cmcm	b=9.4561	At1	0.00000	-0.64446	-0.75000
(50 GPa)	c=3.3341				
AtH ₂	a=5.8264	H1	0.44361	0.25000	0.67874
Pnma	b=2.9241	H5	0.49799	0.75000	0.47529
(200 GPa)	c=4.5377	At1	0.17820	0.75000	0.64043
AtH ₄	a=3.2725	H1	0.66667	0.33333	0.62953
P6/mmm	b=3.2725	At1	0.00000	0.00000	0.00000
(100 GPa)	c=3.0160				
	γ=120				
AtH ₄	a= 4.9931	H1	-0.70156	0.00846	1.00000
Cmmm	b=2.7459	At1	-0.50000	-0.50000	0.50000
(250 GPa)	c= 3.0599				

Table S1 Structure parameters of the stable phases for AtH₂ and AtH₄.

Table S2 The H-H distances of the H₂-units and the charge transferred from At to H in AtH₂ and AtH₄ which is represented by σ (*e*) based on the Bader charge analysis

	Atom	σ (<i>e</i>)	H-H distances (Å)
AtH ₂			
Стст	At	-0.16	0.77
(50 GPa)			
AtH ₂			
Pnma	At	-0.25	0.78
(200 GPa)			
AtH ₄			
P6/mmm	At	-0.35	0.78
(100 GPa)			
AtH ₄			
Cmmm	At	-0.48	0.80
(250 GPa)			

Fig. S1 The calculated electron localization function (ELF) for (a) *Cmcm*-AtH₂, (b) *Pnma*-AtH₂, (c) *P6/mmm*-AtH₄, (d) *Cmmm*-AtH₄. The isosurfaces are 0.9.

Fig.S2 Electronic band structure with the projection onto H atoms (magenta circles) and At atoms (blue circles) for (a) *Cmcm*-AtH₂ at 50 GPa. (b) *Pnma*-AtH₂ at 200 GPa, (c) *P6/mmm*-AtH₄ at 60 GPa, (d) *Cmmm*-AtH₄ at 250 GPa.

Fig.S3 (Color online) Phonon dispersion curves for P6/mm-IH₄ at 200 GPa and 300 GPa with electron–phonon parameter $\lambda_{q,j}(\omega)$ of each mode (q, j). The red solid circles shown in the band structures indicate EPC with a radius proportional to their respective strength. A larger radius represents greater $\lambda_{q,j}(\omega)$.

Fig. S4 Phonon dispersion curves, phonon density of states (PHDOS) projected on At and H atoms for (a) Cmcm-AtH₂ at 50 GPa. (b) Pnma-AtH₂ at 200 GPa, (c) Cmmm-AtH₄ at 250 GPa.