Supporting information

Re-entrant supramolecular interactions in inverse melting α-cyclodextrin·4methylpyridine·water mixtures: an NMR study

Reut Shapira, Yael S. Balazs, Shifi Kababya, Rachel Edrei and Yoav Eichen*a

Schulich Faculty of Chemistry, Technion – Israel Institute of Technology, Technion City 3200008 Haifa Israel. E-mail: yoav@ch.technion.ac.il

Supporting Figures and tables

Figure S1: 1D-NOE spectra of α CD·4MP·H₂O mixture at 267K and 287K (projected from 2D-NOESY, excited protons are sighed).

Figure S2: Two possible orientations for α CD-4MP host-guest complex; dimensions from literatureⁱ.

Figure S3: Relative integration of NOE signals vs. temperature of (a) $4MP(H\alpha)$, (b) $4MP(H\beta)$, (c) $4MP(CH_3)$ and (d) H_2O with $\alpha CD(H_1-H_6)$ for host-guest investigation in $\alpha CD\cdot 4MP\cdot H_2O$ mixture.

Figure S4: 2D-NOESY spectra of α CD·4MP·H₂O mixture at 259K. 4MP(CH₃)-H₂O cross peak is sighed.

Figure S5: 2D-NOESY spectra of α CD·4MP·H₂O mixture at 300K, with no 4MP(CH₃)-H₂O cross peak.

Figure S6: 2D-NOESY spectra of α CD·4MP·H₂O mixture at 335K. 4MP(CH₃)-H₂O cross peak is sighed.

Figure S7: HRMAS 2D-NOESY spectra of α CD·4MP·H₂O mixture at 335K. 4MP(CH₃)-H₂O cross peak is sighed.

Figure S8: 1D-NOE spectra focused on $4MP(CH_3) \rightarrow H_2O$ cross peak in $\alpha CD \cdot 4MP \cdot H_2O$ mixture at different temperatures (projected from 2D-NOESY spectra, $4MP(CH_3)$ is excited). $4MP(CH_3)$ peak is at 1.5-2.0 ppm and its cross peak with water is sighed with an arrow. These cross peak were integrated and their normalized values at different temperature are shown in Figure 3 in the main article.

Temperature	4MP(CH ₃)	DMSO	H ₂	H ₄	H ₆	H _{5,6}	H ₃	H ₂ O	H ₁	4MP(H _β)	4MP(H _α)
293K	3.22 (0.14) ^a	2.3	1.03	1.04	1.03	1.03	1.03	1.03	1.02	4.84	4.43
312K	4.19 (0.15)ª	3.6	1.03	1.03	1.02	1.03	1.03	1.03	1.03	5.85	5.94

Table S1: Spin lattice relaxation time (T_1) values (in seconds) for the protons in α CD·4MP·H₂O mixture.

^a Long and (short) relaxation time due to bi-exponential fitting.

Figure S9: Inverse-recovery measurements of $4MP(CH_3)$ in a) $\alpha CD \cdot 4MP \cdot H_2O$, b) 6:1 $4MP \cdot H_2O$ and c) 4MP at 278±3K. Several populations with different relaxation times are clearly shown and sighed.

Figure S10: Temperature dependence of $4MP(CH_3)$ long (square) and short (circle) T_1 values of $\alpha CD \cdot 4MP \cdot H_2O$ (red), 6:1 $4MP \cdot H_2O$ (green) and 4MP (blue). Error bars represent errors in fitting biexponential curves to data.

 T_1 analysis of a peak with several populations was done by fitting the inverse recovery integration points to $Mz = \sum_{i=1}^{n} M_{0,i} (1 - 2exp(-t/T_{1,i}))$. We found that bi-exponential fitting

 $Mz = M_{0,long} \left[1 - 2exp(-t/T_{1,long}) \right] + M_{0,short} \left[1 - 2exp(-t/T_{1,short}) \right]$ is sufficient, meaning that the 4MP(CH₃) populations could be divided to two main groups: with long and short relaxation times.

SI REFERENCES

ⁱ F. B. T. Pessine, A. Calderini and G. L. Alexandrino, in Book: *Magnetic Resonance Spectroscopy*, ed. D-H. Kim, InTech, Shanghai, 2012, 12, p. 237.