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1. Molecular Dynamics (MD) Simulations 
1.1. Force fields 

We test three different force fields: CHARMM36,1 GROMOS 45X4 (X=A in the aqueous solution 
and X=B in vacuum),2 and GLYCAM.3 Hereafter, CHARMM36, GROMOS 45X4 are referred to 
simply as CHARMM and GROMOS, respectively. CH, CH2, and CH3 groups are treated as united 
atoms in GROMOS. The parameters of potentials (partial charges and LJ parameters assigned to the 
constituent atoms) in CHARMM and GROMOS are collected in Table S1: The parameters for 
cellobiose are exactly the same as those for maltose. The arrangements of the atoms named in Table 
S1 are illustrated in Figure S1. In GLYCAM, the parameters are separately prepared for the first and 
second glucose units. There are slight differences between the parameter sets for cellobiose and 
maltose. 
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Table S1. Atomic partial charges (q) and Lennard-Jones potential parameters (σ and ε) of CHARMM 
and GROMOS force fields. 
 

 CHARMM GROMOS 
Atom type q [−] σ [Å] ε [kcal/mol] q [−] σ [Å] ε [kcal/mol] 

C1 (1st glucose unit) 0.290 1.782 0.032 − − − 
C1 (2nd glucose unit) 0.340 1.782 0.032 − − − 

C1 − − − 0.232 2.510 0.023 
C2 0.140 1.782 0.032 0.232 2.510 0.023 
C3 0.140 1.782 0.032 0.232 2.510 0.023 

C4 (1st glucose unit) 0.140 1.782 0.032 − − − 
C4 (2nd glucose unit) 0.090 1.782 0.032 − − − 

C4 − − − 0.232 2.510 0.023 
C5 0.110 1.782 0.032 0.376 2.510 0.023 
C6 0.050 1.791 0.056 0.232 2.035 0.098 

H (ring) 0.090 1.194 0.045 − − − 
H (hydroxymethyl) 0.090 1.194 0.035 − − − 

H (hydroxyl) 0.420 0.200 0.046 0.410 0.000 0.000 
O1 −0.650 1.572 0.192 −0.538 1.477 0.203 
O2 −0.650 1.572 0.192 −0.642 1.477 0.203 
O3 −0.650 1.572 0.192 −0.642 1.477 0.203 

O4 (1st glucose unit)) −0.650 1.470 0.192 −0.642 1.477 0.203 
O4 (2nd glucose unit) −0.360 1.572 0.100 −0.360 1.477 0.203 

O5 −0.400 1.470 0.100 −0.480 1.477 0.203 
O6 −0.650 1.572 0.192 −0.642 1.477 0.203 
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Figure S1. Arrangement of atoms named in Table S1. (a) Cellobiose. (b) Maltose. Hydrogen atoms 
which is bound to carbon atoms are not drawn. 
 
 
Table S2. Atomic partial charges (q) and Lennard-Jones potential parameters (σ and ε) of GLYCAM 
force field for the first glucose unit (1st glucose unit; see Figure S1). 
 

 Cellobiose Maltose 

Atom type Q [−] σ [Å] ε [kcal/mol] q [−] σ [Å] ε [kcal/mol] 
C1 0.384 1.700 0.109 0.509 1.700 0.109 
C2 0.310 1.700 0.109 0.246 1.700 0.109 
C3 0.284 1.700 0.109 0.286 1.700 0.109 
C4 0.276 1.700 0.109 0.254 1.700 0.109 
C5 0.225 1.700 0.109 0.283 1.700 0.109 
C6 0.282 1.700 0.109 0.276 1.700 0.109 

H (on C1) 0.000 1.147 0.016 0.000 1.147 0.016 
H (on C2−C6) 0.000 1.236 0.016 0.000 1.236 0.016 

H (on O2) 0.437 0.178 0.030 0.437 0.178 0.030 
H (on O3) 0.432 0.178 0.030 0.427 0.178 0.030 
H (on O4) 0.440 0.178 0.030 0.436 0.178 0.030 
H (on O6) 0.424 0.178 0.030 0.418 0.178 0.030 

O2 −0.718 1.533 0.210 −0.713 1.533 0.210 
O3 −0.709 1.533 0.210 −0.699 1.533 0.210 
O4 −0.714 1.533 0.210 −0.710 1.533 0.210 
O5 −0.471 1.500 0.170 −0.574 1.500 0.170 
O6 −0.688 1.533 0.210 −0.682 1.533 0.210 
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Table S3. Atomic partial charges (q) and Lennard-Jones potential parameters (σ and ε) of GLYCAM 
force field for the second glucose unit (2nd glucose unit: see Figure S1). 
 

 Cellobiose Maltose 
Atom type q [−] σ [Å] ε [kcal/mol] q [−] σ [Å] ε [kcal/mol] 

C1 0.384 1.700 0.109 0.384 1.700 0.109 
C2 0.310 1.700 0.109 0.310 1.700 0.109 
C3 0.284 1.700 0.109 0.284 1.700 0.109 
C4 0.276 1.700 0.109 0.276 1.700 0.109 
C5 0.225 1.700 0.109 0.225 1.700 0.109 
C6 0.282 1.700 0.109 0.282 1.700 0.109 

H (on C1) 0.000 1.147 0.016 0.000 1.147 0.016 
H (on C2−C6) 0.000 1.236 0.016 0.000 1.236 0.016 

H (on O1) 0.445 0.178 0.030 0.445 0.178 0.030 
H (on O2) 0.437 0.178 0.030 0.437 0.178 0.030 
H (on O3) 0.432 0.178 0.030 0.432 0.178 0.030 
H (on O6) 0.424 0.178 0.030 0.424 0.178 0.030 

O1 −0.639 1.533 0.210 −0.639 1.533 0.210 
O2 −0.718 1.533 0.210 −0.718 1.533 0.210 
O3 −0.709 1.533 0.210 −0.709 1.533 0.210 
O4 −0.468 1.500 0.170 −0.468 1.500 0.170 
O5 −0.471 1.500 0.170 −0.471 1.500 0.170 
O6 −0.688 1.533 0.210 −0.688 1.533 0.210 

 
1.2. Simulation procedures 

The molecular dynamics (MD) simulations for the disaccharides are carried out in the following 
manner. The initial conformation (structure) of a disaccharide molecule is constructed using the 
CHARMM 41b1 program package4 for CHARMM and using the LEaP module in the AMBER 
2017 program package5 for GROMOS and GLYCAM. We have found that the conformations 
constructed via these two different routes are essentially the same. The following procedure is then 
followed using the AMBER 2017 program package5 for all the three force fields. 

The MD simulation in vacuum is performed at 298 K for a disaccharide molecule. The MD 
simulation in water is conducted for a disaccharide molecule immersed in the SPC/E water6 on the 
basis of the NPT ensemble at 298 K and 1 atm under periodic boundary conditions. The minimum 
distance between the disaccharide surface and the box edge is initially set at ~27 Å that is about 9.6 
times larger than the molecular diameter of water 2.8 Å. The number of water molecules and the 
initial box size are given in Table S4. The lengths of the bonds with H-atoms are constrained with the 
SHAKE algorithm.7 The electrostatic interactions are calculated using the particle-mesh Ewald 
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(PME) method.8 The real-space cut-off, spline order, and Ewald tolerance in the PME method are set 
at 8 Å, 4, and 10−5, respectively. The cut-off for the Lennard-Jones (LJ) potential is 12 Å. The time 
step is 2.0 fs. The Langevin thermostat9 and the Berendsen barostat10 are employed for the 
temperature and pressure regulations, respectively. 

To achieve the NPT ensemble at 298 K and 1 atm, the temperature and pressure equilibration of 
the system is carried out as follows. First, for removing the overlaps of the disaccharide and water 
molecules, the initial positions of water molecules are slightly modified using the steepest descent 
and conjugated gradient methods. By this modification, the potential energy of the system becomes 
sufficiently low. We then perform the subsequent temperature and pressure equilibration. We 
generate the velocities in accordance with a Maxwell distribution at 298 K and perform the 
temperature equilibration for 50 ps under the NVT condition. The pressure equilibration is then 
conducted at 298 K and 1 atm for 50 ps under the NPT condition. The disaccharide conformation 
thus obtained is referred to as “pre-equilibrated conformation” (we note that this conformation is 
quite similar to the initial one). 

Starting from the pre-equilibrated conformation, we perform a 10-ns equilibration run followed 
by a 270-ns production run. These runs are conducted with the NPT ensemble at 298 K and 1 atm. 
During the production run, snapshot structures of a disaccharide molecule are stored every 100 ps 
and used in the calculation of thermodynamic quantities other than the conformational entropy: The 
number of the snapshot structures is 2700. (Refer to Section 2.4 for the calculation of the 
conformational entropy.) For estimating the statistical error for a thermodynamic quantity, we 
employ a block average by dividing the trajectory data into nine segments. In each segment, we have 
300 snapshot structures and take an average of the 300 values of the quantity. The average of the nine 
averaged values for the segments is adopted as the theoretically calculated one. The block-average 
method possesses the advantage that we can check whether the calculated value converges 
sufficiently well as the MD simulation proceeds. 

For a cellobiose molecule in vacuum, there are two peaks in the distribution of probability for φ, 
an angle associated with the glycosidic linkage (see Figure S4). Here, when we examined the value 
of Z in MT snapshot structures obtained by the MD simulation and observed that Z equals Z0 in M 
snapshot structures, “probability for Z at Z=Z0 (or probability of Z=Z0)” is M/MT. (When Z is a 
continuous amount, the probability is calculated for discretized Z.) The two peaks occur at φ~-75º 
and 50º. The probability of φ~50º is much lower than that of φ~-75º. Only in the simulation using 
GLYCAM, however, we encounter the following problem: After the simulation time exceeds 100 ns, 
the molecular conformation is frozen with φ~66º. For this reason, we perform the production run 
only for 100 ns. This is why the results from CHARMM and GROMOS are mainly discussed and 
the result from GLYCAM is presented as additional information. 
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Table S4. Number of water molecules and initial box size. 

 Force field 
Number of water 

molecules 
Initial box size: 

x×y×z (Å3) 

Cellobiose 
CHARMM 8000 65.32×65.32×65.32 
GROMOS 9238 65.77×65.77×65.77 
GLYCAM 8632 66.46×71.65×67.14 

Maltose 
CHARMM 8000 64.29×64.29×64.29 
GROMOS 8932 65.05×65.05×65.05 
GLYCAM 8606 67.70×70.41×66.82 

 

1.3. Root mean square deviation (RMSD) from initial structure 

The change of RMSD from the pre-equilibrated structure in terms of all the atoms during the MD 
simulation is shown in Figures S2 (CHARMM) and S3 (GROMOS). During the 270-ns production 
run, the RMSD fluctuates only within the small range 0.3-3.0 Å. In the case of cellobiose, for 
instance, there are roughly two stationary points in terms of the RMSD. The conformations around 
RMSD~1 and ~2.8 Å in each plot correspond to φ~-75º and 50º, respectively. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure S2. Root mean square deviation (RMSD) from the pre-equilibrated conformation in terms of 
all the atoms in the disaccharide molecule. The force field employed is CHARMM. 
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Figure S3. Root mean square deviation (RMSD) from the pre-equilibrated conformation in terms of 
all the atoms in the disaccharide molecule. The force field employed is GROMOS. 

 
 
 
1.4. Examination of simulation results 

Figure S4 shows the distribution of probability for each of the two torsion angles (j and y) on the 
glycosidic bonds, which are calculated using CHARMM. Overall, the frequencies are quite similar 
to those reported by another research group. 

The most important quantity is the difference between cellobiose and maltose in terms of the key 
free-energy function µ*-µg°: D(µ*-µg°)=(µ*-µg°)A-(µ*-µg°)B (the subscripts “A” and “B” denote 
“cellobiose” and “maltose”, respectively). To check if the simulation time is long enough, we plot 
D(µ*-µg°) calculated against the simulation time in Figure S5 where the snapshot structures sampled 
until “Time” are utilized in the calculation. D(µ*-µg°) calculated is well converged especially when 
CHARMM is employed as the force field. In the figure, we also show that the difference between 
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cellobiose and maltose in terms of the entropic component, –TDSD= -T(SCW-SC)A-(SCW-SC)B, is also 
well converged. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure S4. Distribution of probability for each of the two torsion angles (j and y) on the glycosidic 
bonds in vacuum or in water. The force field employed is CHARMM. 
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Figure S5. Convergent behavior of D(µ*-µg°). D(µ*-µg°)=“(µ*-µg°) of cellobiose” - “(µ*-µg°) of 
maltose”. (a) CHARMM. (b) GROMOS. Convergent behavior of −TDSD. (c) CHARMM. (d) 
GROMOS. The error bar indicates 95% confidence interval. 
 
 
 
 
2. Theoretical Methods for Calculating Hydration Energy, Hydration 
Entropy, and Conformational Entropy 
2.1. Two types of integral equation theories for molecular liquids 

In an integral equation theory (IET),11 the Ornstein-Zernike (OZ) equation and a closure equation are 
derived from the system partition function on the basis of classical statistical mechanics. In the case 
of bulk solvent of a single component, for example, the temperature, number density, and 
solvent-solvent interaction potential form the input data. By numerically solving the OZ equation 
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coupled with the closure equation, we can calculate the direct and total correlation functions, 
microscopic structure of the solvent, and thermodynamic quantities. The average value of a physical 
quantity is calculated essentially for an infinitely large system and an infinitely large number of 
system configurations. The solvent structure near a solute and thermodynamic quantities of solvation 
(i.e., solvation free energy, entropy, and energy), can also be calculated. In the analysis of solvation 
properties of a solute, it is assumed that the solute is inserted into a solvent under isochoric condition 
at infinite dilution. In the first step, the bulk solvent is treated and the solvent-solvent correlation 
functions are calculated. In the second step, the solute-solvent correlation functions are calculated 
using the solvent-solvent correlation functions and the solute-solvent interaction potential as part of 
the input data. For a molecular liquid like water as the solvent, there are two types of IETs: the 
reference interaction site model (RISM) theory12-16 and the angle-dependent integral equation 
(ADIE) theory.17-22 In what follows, we briefly summarize the two types of IETs applied to bulk 
water. 

In the RISM and related theories,12-16 a water molecule is represented by atomic sites referred to 
as “interaction sites” (i.e., a water molecule has three sites of an oxygen and two hydrogens: O, H, 
and H). The OZ equation is expressed by the site-site correlation functions and the intramolecular 
correlation function representing the molecular structure of water and referred to as “site-site OZ 
(SSOZ) equation”. The closure equation is also expressed by the site-site correlation functions. A 
site-site correlation function is dependent only on the distance between centers of two interaction 
sites, which is advantageous simplicity. In this study, we employ a modified version of the SPC/E 
(cSPC/E) model23 for water, the dielectrically consistent version referred to as “dielectrically 
consistent RISM (DRISM) theory”,12 and the Kovalenko-Hirata (K-H) closure equation.15 The 
DRISM theory is the most reliable among the RISM and related theories. The value of rSdS

3 is set at 
0.7317 (rS is the number density of bulk water and dS=2.8 Å) and T=298 K. 

On the other hand, the ADIE theory17-22 explicitly takes account of the dependence of a 
correlation function on the orientations of water molecules. Therefore, a correlation function is 
dependent not only on the distance between centers of two water molecules but also on their 
orientations. The orientation of a water molecule is represented by three Euler angles. The 
water-water correlation is a function of six independent variables. The SSOZ equation is 
approximate, whereas the OZ equation in the ADIE theory is exact. In the ADIE theory, however, 
since the computational burden in numerically handling the six-variable functions is unacceptably 
heavy, the OZ and closure equations must be reduced using mathematical techniques such as the 
rotational-invariant expansion of correlation functions. In this study, a water molecule is modeled as 
a hard sphere with diameter dS=0.28 nm (rSdS

3=0.7317) in which a point dipole and a point 
quadrupole of tetrahedral symmetry are embedded.17,18 The hypernetted-chain (HNC) approximation 
is adopted as the closure equation. The influence of molecular polarizability of water is taken into 
account by employing the self-consistent mean field theory.17,18 It has been corroborated that the 
results from the ADIE/HNC theory are in very good agreement with those from Monte Carlo and 
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MD simulations for hydrophobic hydration.22,24 
Here, we summarize the characteristics of the DRISM and ADIE theories exhibited when an 

analysis on solute hydration is undertaken. In general, the result from the DRISM theory is less 
accurate than that from the ADIE theory.22,24 However, the hydration energy of a hydrophilic solute 
can be calculated with sufficient accuracy even by the DRISM theory,25,26 though the hydration 
entropy is significantly less accurate.24 The great advantage of the DRISM theory is that it can treat a 
large solute with polyatomic structure. When a polyatomic solute is treated, a solute-water site-site 
correlation function, which is defined for an atom in the solute with a fixed structure (this is the 
solute) and an interaction site in a water molecule, is three dimensional. Hence, the theory for 
analyzing hydration of a polyatomic solute is referred to as “three-dimensional RISM (3D-RISM) 
theory”.13-16 On the other hand, the ADIE theory can practically treat only a spherical solute due to 
the numerical complexity mentioned above. Our solution of this problem is the following: For a 
solute molecule with a fixed structure, its hydration energy is calculated by the 3D-RISM theory; and 
its hydration entropy is calculated by combining the ADIE theory with our morphometric approach 
(MA)30,31 which is capable of relating the hydration entropy of the solute molecule to its polyatomic 
structure with quantitative accuracy. 
 

2.2. Calculation of hydration energy of a solute molecule with a fixed structure 

In the 3D-RISM theory,13-16 the SSOZ and closure equations are expressed by the 3D correlation 
functions. The calculation procedure is as follows. First, the site-site correlation functions for bulk 
water are calculated using the DRISM theory12 coupled with the K-H closure equation.15 The 
solute-water site-site correlation functions are then obtained by numerically solving the 3D-RISM 
theory where the K-H closure equation15 is employed. (The SSOZ and K-H closure equations were 
written in our earlier publications.24,27-29) The numerical solution is performed on a 3D cubic grid. 
The grid spacing (Δx, Δy, and Δz) is set at 0.5 Å, and the grid resolution (Nx×Ny×Nz) is chosen such 
that the minimum distance between the solute surface and the box edge reaches 14 Å. It has been 
confirmed that the spacing is sufficiently small and the box size (NxΔx, NyΔy, NzΔz) is large enough 
for the calculation result to become identical within convergence tolerance. 

The hydration free energy of the solute µH is calculated using the modified version of the 
Singer-Chandler formula.32 The hydration entropy SH is evaluated through the analytical 
differentiation of µH with respect to T. The hydration energy εH is calculated from 

 
εH=µH+TSH.                                                                 (S2) 
 
We note that µH is independent of the solute insertion condition, isochoric or isobaric, though εH and 
SH are not.21 
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2.3. Calculation of hydration entropy of a solute molecule with a fixed structure 

Fortunately, it has been shown that SH is fairly insensitive to the solute-water interaction potential32 
and influenced primarily by the geometric characteristics of the solute structure.27-31 Therefore, a 
solute molecule with a fixed structure (this is the solute) can be modeled as a set of fused, neutral 
hard spheres, in which case the diameter of each atom in the solute molecule is set at the 
corresponding value of an LJ potential parameter s. 

The geometric characteristics of the solute polyatomic structure can be taken into account by 
only its four geometric measures with quantitative accuracy, which is a great advantage of the 
MA.30,31 The four measures are the excluded volume denoted by Vex, solvent-accessible surface area 
A, and integrated mean and Gaussian curvatures of the accessible surface, X and Y, respectively. SH is 
expressed as the linear combination of the four measures referred to as “morphometric form”27-31 (kB 
is the Boltzmann constant): 

 

SH/kB=C1Vex+C2A+C3X+C4Y.                                                   (S3) 

 

The four coefficients (C1-C4), which are dependent only on the solvent species and its 
thermodynamic state, are determined beforehand for the simplest geometries: isolated hard-sphere 
solutes with various diameters. 

The calculation comprises the following steps: 

(1) Calculate SH of an isolated hard-sphere solute (SIHSS) with diameter dU using the ADIE 
theory.16-21 Consider different values of dU in the range, 0.6£dU/dS£10, to obtain a sufficiently large 
set of data for SH and dU. The numerical solution of the basic equations is carried out using the robust, 
highly efficient algorithm developed by Kinoshita and coworkers.19,34 (The basic equations, the OZ 
and HNC closure equations, were written in earlier publications.17-22,24,27-29) SH is evaluated through 
Eq. (S1) where µ is calculated using the Morita-Hiroike formula35,36 adapted to molecular liquids. 

(2) Determine C1-C4 by applying the least-squares method to the following equation: 

 

SIHSS/kB=C1(4pR3/3)+C2(4pR2)+C3(4pR)+C4(4p), R=(dU+dS)/2.                        (S4) 

 

Equation (S4) is the morphometric form for isolated spherical solutes. 

(3) Calculate Vex, A, X, and Y of the biomoecule using an extended version of Connolly’s 
algorithm.37,38 The input data are the (x, y, z) coordinates of the center of each atom in the solute 
molecule and its diameter D. D is set at s taken from the force field employed. 
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(4) Calculate SH of the solute molecule from Eq. (S3) to which C1-C4 determined in step (2) are 
substituted. 

The high accuracy of the MA was corroborated in our earlier works.30,31 We tested a hard-sphere 
solvent31 and a solvent that is quite similar to the LJ liquid.31 We calculated the solvation entropy of 
protein G with hundreds of different structures via the two routes: the 3D integral equation theory 
(3D-IET)39,40 and a combination of the radial-symmetric IET (RSIET)11 and the MA. The 
polyatomic structure of the protein can explicitly be treated by the 3D-IET. The error of the 
RSIET-MA combination was smaller than ±2%. 

In the morphometric form hinging on the Hadwiger theorem,41 the four coefficients are equal to 
thermodynamic quantities of pure bulk solvent. In the case of the solvation free energy µ, for 
instance, the first and second coefficients are the pressure P and the surface tension g, respectively. 
However, the Hadwiger theorem is valid only for an infinitely large solute. As argued in our earlier 
works,31,43,45 the form becomes problematic when it is applied to a nonpolar solute immersed in 
water. At P=1 atm, the EV term is negligibly small, and the form is approximated by µ~gA (µ>0). 
However, g becomes larger as T is lowered with the result that µ increases and the hydrophobicity is 
strengthened. This conflicts with the experimental evidence that at low temperatures the 
hydrophobicity is weakened and a protein is denatured.31,43−45 No such problem arises in our form, 
because the four coefficients are calculated using the IET. 

   In general, when the 3D-RISM theory is exclusively applied to the calculation of the free-energy 
change upon binding of two biomolecules, it usually becomes positive and significantly large.28,42 
This serious problem is overcome by replacing the 3D-RISM theory by the ADIE-MA combination 
in the calculation of SH. 
 

2.4. Calculation of conformational entropy of solute molecules 

During the production run, snapshot conformations of a disaccharide molecule are stored every 1 ps 
and used in the calculation of conformational entropy: The number of the snapshot conformations is 
270000. In the Boltzmann-quasi-harmonic (BQH) approximation method,46-48 the conformational 
entropy SBQH is expressed as 

SBQH =−kBΣi
3N−6∫dqiρ(qi)lnρ(qi)+(ln|C|)/2    																																						 (S5) 

where N is the number of atoms, ρ(qi) is the probability-density function (PDF) of i-th coordinate qi, 
and C is the correlation coefficient matrix. The coordinate system is composed of bond, angle, and 
torsion terms, and the number of coordinates is 3N−6. The first term is the so-called “independent 
term”. It is calculated by a summation of the exact one-dimensional Boltzmann entropy which is 
described using ρ(qi). The second term is the so-called “correlation term”. It is equivalent to the 
second term in the quasi-harmonic approximation.49 The calculation procedure is as follows. For 
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estimating the statistical error for -TDSD, we employ a block average by dividing the trajectory data 
into nine segments. -TDSD is calculated using 30000 snapshot conformations in each segment, and 
the value averaged over the nine segments is adopted as the theoretically calculated one. The first 
term of Eq. (S5) is calculated using the 30000 snapshot conformations. The numerical solution is 
performed using the histogram binning method.47 The width of bin for bond is set at 0.025 Å, and 
those for angle and torsion are set at 1 degree. C in the second term is also calculated using the 
snapshot conformations. We emphasize that, for the calculation of conformational entropy, the BQH 
approximation using internal coordinate system including improper torsion50 is far superior to the 
other methods which are currently available (e.g., quasi-harmonic and related computational 
methods46,49-52). 

 

2.5. Comparison between 3D-RISM and MD results in terms of hydration energy 

We calculate the hydration energy eH,MD of maltose by the MD simulation based on NPT ensemble 
using CHARMM. The procedure is as follows: 
(1) Using 2700 snapshot configurations of the equilibrated maltose-water system, we calculate the 
system energy ESystem comprising the conformational energy of maltose, maltose-water interaction 
energy, and water-water interaction energy. The conformational energy of maltose is denoted by 
EMaltose. 
(2) We then perform the MD simulation for pure water. After the equilibrium is reached, we 
calculate the pure-water energy EWater using 2700 snapshot configurations. The numbers of water 
molecules in (1) and (2) are the same. 
(3) eH,MD is obtained as eH,MD=ESystem-(EMaltose+EWater). 
We note that eH,MD is the hydration energy under the isobaric condition. On the other hand, the 
hydration energy obtained by the 3D-RISM theory, eH, is calculated under the isochoric condition. 
Therefore, the hydration energy under the isobaric condition from the 3D-RISM theory eH,IET to be 
compared with eH,MD is given by21 
 
eH,IET/(kBT)=eH/(kBT)+W-PVP/(kBT),                                             (S6a) 
W=(a*/kT*)VP/dS

3.                                                          (S6b) 
 
Here, P is the system pressure and VP is the partial molar volume of maltose (i.e., the change in 
system volume caused upon insertion of maltose into water under the isobaric condition). The 
dimensionless parameters, a* and kT*, which depend only on the properties of pure bulk water, are 
defined as a*=aT and kT*=kTkBT/dS

3 where a is the isobaric thermal expansion coefficient and kT is 
the isothermal compressibility. a*/kT*=0.894 at T=298 K.53,54 We calculate VP using the 3D-RISM 
theory. At P=1 atm, PVP/(kBT) is negligibly small. 
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The result obtained is as follows: eH=−58.87±0.11, eH,IET=−50.04±0.11, and eH,MD=−52.2±12.1 
(the unit is kcal/mol). Considering the fact that the water model in the 3D-RISM theory is not exactly 
the same as that in the MD simulation, we conclude that the agreement between eH,IET and eH,MD is 
remarkably good. 

However, the large error bars (the 95% confidence intervals) in the MD result is rather puzzling. 
A problem in the MD simulation is the following: ESystem=−86153.8±7.0, EWater=−86359.0±6.6, 
EMaltose=257.4±0.2, and EMaltose+EWater)=-86101.6±6.6 (the unit is kcal/mol); cancellation of 
significant digits occurs in eH,MD=ESystem-(EMaltose+EWater); and calculation of eH,MD with sufficient 
accuracy is a rather difficult task. It seems that a simulation time which is much longer than 270 ns is 
required for the production run. In our opinion, the MD simulation is not suited to the present study 
which attempts to elucidate D(µ*-µg°)=0.87 kcal/mol. The IET is much more suited. In the 
simulation time of 270 ns, we can generate a sufficiently large ensemble of molecular structures of a 
disaccharide in water for calculating a thermodynamic quantity of hydration using the IET. 
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