Rovibrational laser jet-cooled spectroscopy of SF_6 -rare gas complexes in the v_3 region of SF_6

Pierre Asselina, Andrew C. Turnerb, Laurent Bruelc, Valérie Brennerd, Marc-André Gaveaud and Michel Monsd

Supplementary Material

Content:

Fig.1 EC-QCL jet cooled spectra of the v_3 band of SF₆ monomer for 0.12 % SF₆ (bottom), and for 0.12% SF₆ and 1% Ar (middle) diluted in 8 bar of helium at an axial distance z = 15 mm for the pin hole nozzle. The spectrum of SF₆-Ar (upper trace) is obtained after subtraction of both jet-cooled spectra.

Table S1 : List of transition frequencies of SF_6 -Rg (Rg = Ar, Kr, Xe) heterodimers assigned and used to simulate the rovibrational parallel and perpendicular band contours.

Annex : Molecular parameters used in the fitting procedure of the SF_6 -Rg experimental data with a radial one-dimensional Buckingham-type intermolecular potential

Fig.S1 EC-QCL jet cooled spectra of the v_3 band of SF₆ monomer for 0.12 % SF₆ (bottom), and for 0.12% SF₆ and 1% Ar (middle) diluted in 8 bar helium at an axial distance z = 15 mm for the pin hole nozzle. The spectrum of SF₆-Ar obtained after subtraction of both jet-cooled spectra is displayed above.

Table S1 : List of transitions frequencies of SF_6 -Rg (Rg = Ar, Kr, Xe) hetero dimers assigned and used to simulate the rovibrational parallel and perpendicular band contours.

SF ₆ -Ar parallel band						
	J'	K'	ľ	J"	К''	
Calc. Frequency						
046 07677						
946.97677	1	1		1	1	
946.97151	2	2		2	2	
946.96186	3	2		3	2	
946.96186	4	4		4	4	
946.95479	3	1		3	1	
946.94504	4	2		4	2	
946.93612	0	0		1	0	
946.88632	1	0		2	0	
946.88632	1	1		2	1	
946.83171	2	0		3	0	
946.83171	2	1		3	1	
946.77305	3	0		4	0	
946.77305	3	1		4	1	
946.71005	4	0		5	0	
946.71005	4	1		5	1	
946.64723	5	0		6	0	
946.64723	5	1		6	1	
947.02187	1	0		0	0	
947.05905	2	0		1	0	
947.05905	2	1		1	1	
947.09159	3	0		2	0	
947.09159	3	1		2	1	
947.12056	4	0		3	0	
947.12056	4	1		3	1	
947.14713	5	0		4	0	
947.14713	5	1		4	1	
947.17081	6	0		5	0	
947.17081	6	1		5	1	
947.17081	6	2		5	2	
947.18282	7	0		6	0	
947.18282	7	1		6	1	
946.97677	1	1		1	1	
946.97151	2	2		2	2	
946.96186	3	2		3	2	
946.96186	4	4		4	4	
946.95479	3	1		3	1	
946.94504	4	2		4	2	
946,93612	0	0		1	0	
946,88632	1	0 0		2	0	
946 88632	1	1		2	1	
946.83171	2	0		3	0	

946.83171	2	1	3	1
946.77305	3	0	4	0
946.77305	3	1	4	1
946.71005	4	0	5	0
946.71005	4	1	5	1
946.64723	5	0	6	0
946.64723	5	1	6	1
947.02187	1	0	0	0
947.05905	2	0	1	0
947.05905	2	1	1	1
947.09159	3	0	2	0
947.09159	3	1	2	1
947.12056	4	0	3	0
947.12056	4	1	3	1
947.14713	5	0	4	0
947.14713	5	1	4	1
947.17081	6	0	5	0
947.17081	6	1	5	1
947.17081	6	2	5	2
947.18282	7	0	6	0
947.18282	7	1	6	1
946.97677	1	1	1	1
946.97151	2	2	2	2
946.96186	3	2	3	2
946.96186	4	4	4	4
946.95479	3	1	3	1
946.94504	4	2	4	2
946.93612	0	0	1	0
946.88632	1	0	2	0
946.88632	1	1	2	1
946.83171	2	0	3	0

SF₆-Kr Parallel band

_

946.45264	5	0	6	0	
946.4529	5	1	6	1	
946.45368	5	2	6	2	
946.45498	5	3	6	3	
946.4568	5	4	6	4	
946.4875	4	0	5	0	
946.48776	4	1	5	1	
946.48854	4	2	5	2	
946.48984	4	3	5	3	
946.49166	4	4	5	4	
946.52104	3	0	4	0	
946.5213	3	1	4	1	
946.52208	3	2	4	2	
946.52338	3	3	4	3	
946.55326	2	0	3	0	
946.55352	2	1	3	1	
946.5543	2	2	3	2	

946.58416	1	0	2	0
946.58442	1	1	2	1
946.617	9	9	9	9
946.617	9	8	9	8
946.617	9	7	9	7
946.617	9	6	9	6
946.617	9	5	9	5
946.617	9	4	9	4
946.617	9	3	9	3
946.6186	0	0	1	0
946.66894	1	0	0	0
946.66894	1	0	0	0
946.741334	4	0	3	0
946.74134	4	1	3	1
946.741358	4	2	3	2
946.741387	4	3	3	3
946.7635	5	0	4	0
946.76376	5	1	4	1
946.76454	5	2	4	2
946.76584	5	3	4	3
946.76766	5	4	4	4
946 78384	6	0	5	0
946 7841	6	1	5	1
946 78488	6	2	5	2
946 78618	6	2	5	2
946 788	6	ر ۵	5	Δ
946 80286	7	0	6	0
946 80312	, 7	1	6	1
946 8039	, 7	2	6	2
946 8052	, 7	2	6	2
946 80702	7	1	6	1
9/16 / 1526/	, 5	0	6	- -
946,45204	5	1	6	1
946 45368	5	2	6	2
940.45308	5	2	6	2
046 4568	5	⊿	6	
940.4308 046.4975	7	4	5	4
940.4875	4	1	5	1
946 48854	4	2	5	2
016 18081	4	2	5	2
940.40904	4		5	
940.49100	4	4	1	4
940.52104	с С	1	4	1
940.3213	с С	1 2	4	1 2
940.32208	2 2	2	4	2
940.32336	2 2	5	4	5
940.55520	2	1	с С	1
540.55352 016 FF 42	2 2	⊥ ר	3 2	1 2
340.3343 016 E0116	۲ ۱	2	3 7	2
940.98410 046 F0449	1	1	2	1
940.9844Z	U T	U T	2	U T
940.01/	9	9	9	9
946.617	9	ð	9	8

946.617	9	7	9	7
946.617	9	6	9	6
946.617	9	5	9	5
946.617	9	4	9	4
946.617	9	3	9	3
946.6186	0	0	1	0
946.66894	1	0	0	0
946.66894	1	0	0	0
946.741334	4	0	3	0
946.74134	4	1	3	1
946.741358	4	2	3	2
946.741387	4	3	3	3
946.7635	5	0	4	0
946.76376	5	1	4	1
946.76454	5	2	4	2
946.76584	5	3	4	3
946.76766	5	4	4	4
946.78384	6	0	5	0
946.7841	6	1	5	1
946.78488	6	2	5	2
946.78618	6	3	5	3
946.788	6	4	5	4
946.80286	7	0	6	0
946.80312	7	1	6	1
946.8039	7	2	6	2
946.8052	7	3	6	3
946.80702	7	4	6	4

SF₆-Kr Perpendicular band

947.009916	2	2	-1	3	3
947.035404	2	1	-1	3	2
947.036555	4	1	1	5	0
947.063200	1	1	-1	2	2
947.063931	3	1	1	4	0
947.064270	2	0		3	1
947.091527	2	1	1	3	0
947.092086	1	0		2	1
947.096892	1	0		1	1
947.097180	2	0		2	1
947.097612	3	0		3	1
947.098188	4	0		4	1
947.098908	5	0		5	1
947.099772	6	0		6	1
947.122484	1	1	1	1	0
947.122772	2	1	1	2	0
947.123204	3	1	1	3	0
947.123780	4	1	1	4	0
947.124500	5	1	1	5	0
947.125364	6	1	1	6	0
947.126372	7	1	1	7	0

947.150212	1	1	1	0	0
947.151220	2	2	1	2	1
947.151652	3	2	1	3	1
947.152228	4	2	1	4	1
947.152948	5	2	1	5	1
947.153812	6	2	1	6	1
947.178935	5	1	1	5	0
947.179284	2	1	1	1	0
947.206964	3	1	1	2	0
947.207732	2	2	1	1	1
947.251804	3	3	1	2	2
947.288644	3	2	1	2	1
947.288756	4	1	1	3	0
947.314492	4	2	1	3	1
947.316940	5	1	1	4	0
947.342876	4	3	1	3	2
947.343468	5	2	1	4	1
947.346060	6	1	1	5	0
947.365316	4	4	1	3	3
947.365652	5	3	1	4	2
947.373116	4	4	1	3	3

SF₆-Xe Parallel band

945.9	9058	9	0	10	0
945.9	9058	9	1	10	1
945.9	9058	9	2	10	2
946.0)1614	8	0	9	0
946.0	01614	8	1	9	1
946.0	01614	8	2	9	2
946.0)4168	7	0	8	0
946.0	4168	7	1	8	1
946.0	4168	7	2	8	2
946.0	6614	6	0	7	0
946.0	6614	6	1	7	1
946.0	9048	5	0	6	0
946.0	9048	5	1	6	1
946.0	9048	5	2	6	2
946.1	.1415	4	0	5	0
946.1	.1415	4	1	5	1
946.1	.1415	4	2	5	2
946.1	.3765	3	0	4	0
946.1	.3765	3	1	4	1
946.1	.3765	3	2	4	2
946.1	.5996	2	0	3	0
946.1	5996	2	1	3	1
946.1	.5996	2	2	3	2
946.1	.8238	1	0	2	0
946.2	0251	0	0	1	0
946.2	2112	2	2	2	2
946.2	2112	1	1	1	1

946.22112	3	3	3	3
946.22112	3	2	Э	2
946.22112	4	3	4	3
946.22112	2	1	2	2 1
946.24492	1	0	C	0
946.26361	2	0	1	. 0
946.26361	2	1	1	. 1
946.28244	3	0	2	2 0
946.28244	3	1	2	2 1
946.28244	3	2	2	2
946.30083	4	0	3	0
946.30083	4	1	3	8 1
946.30083	4	2	3	2
946.31871	5	0	4	0
946.31871	5	1	4	1
946.31871	5	2	4	2
946.35292	7	0	e	6 O
946.35292	7	1	e	51
946.35292	7	2	e	52
946.36902	8	0	7	0
946.36902	8	1	7	' 1
946.36902	8	2	7	2
946.38455	9	0	8	8 0
946.38455	9	1	8	8 1
946.38455	9	2	8	8 2
946.39988	0	0	9	0
946.39988	0	1	ç) 1
946.39988	0	2	ç	2

SF₆-Xe Perpendicular band

946.8655	4	0		4	1
946.8655	5	0		5	1
946.8655	3	0		3	1
946.8655	6	0		6	1
946.8655	7	0		7	1
946.8655	2	0		2	1
946.8655	8	0		8	1
946.8655	1	0		1	1
946.89644	4	1	1	4	0
946.89644	5	1	1	5	0
946.89644	3	1	1	3	0
946.89644	6	1	1	6	0
946.89644	2	1	1	2	0
946.89644	1	1	1	1	0
946.91795	1	1	1	0	0
946.936	5	2	1	5	1
946.936	4	2	1	4	1
946.936	6	2	1	6	1
946.936	3	2	1	3	1
946.936	7	2	1	7	1

946.936	8	2	1	8	1
946.936	2	2	1	2	1
946.936	9	2	1	9	1
946.963	3	1	1	2	0
946.9725	5	3	1	5	2
946.9725	6	3	1	6	2
946.9725	4	3	1	4	2
946.9725	7	3	1	7	2
946.9725	8	3	1	8	2
946.9725	3	3	1	3	2
946.9725	9	3	1	9	2
946.99487	3	2	1	2	1

Annex : Molecular parameters used in the fitting procedure of the SF₆-Rg experimental data with a radial one-dimensional Buckingham-type intermolecular potential

The repulsive β parameter can be estimated from the tail of the wavefunctions of the interacting molecules. From quantum defect theory,¹ the asymptotic form of the wavefunction depends upon the ionization energy of the molecule and takes the form

$$\Psi \alpha e^{-R/a_0 n_{eff}}$$
(1)

where a_0 is the Bohr radius and n_{eff} is an effective principal quantum number such that $n_{eff}^2 = R_d/E_i$ (R_d Rydberg constant, E_i ionization energy). By analogy with the asymptotic form of the repulsion, it comes

$$\beta = {}^{(1)} / n_{eff,SF_{6+}} 1 / n_{eff,Rg}) / a_0$$
⁽²⁾

The values of β for SF₆-Rg obtained with Eq.(2) are derived from effective principle quantum numbers calculated from ionization potential values² and are reported in Table S2. C_{6}^{AB} coefficients for AB heterodimers are extracted from the literature using the combining rule $C_{6}^{AB} \approx (C_{6}^{AA}C_{6}^{BB})^{1/2}$ expected to be a good approximation.³ The C_{6}^{Rg-Rg} and $C_{6}^{SF_{6}-SF_{6}}$ calculated coefficients are taken from recognized works of Tao et al.⁴, Vydrov et al.⁵ and Kumar et al.⁶ and are gathered in Table S3.

Table S4 contains all the parameters required to plot the graph $\Delta v_{exp} (R_m^6/C_6)$ as a function of $(^{3\beta/R_m})$. Experimental well depths ε of the SF₆-Rg heterodimers are also derived from these parameters.

	E_i (eV)	$1/n_{eff}$		β(Å-1)
SF ₆	15.7	1.0744		
Ne	21.565	1.2590	SF ₆ -Ne	4.411
Ar	15.760	1.0760	SF ₆ -Ar	4.065
Kr	14.000	1.0414	SF ₆ -Kr	3.949
Хе	12.130	0.9442	SF ₆ -Xe	3.816

Table S2: Ionization potential and effective principle quantum number for rare gases and SF_6 for calculating model repulsive forces and repulsive β parameters related to SF_6 -Rg heterodimers.

		C ^{Rg – Rg} calculate	d		$C^{SF_6 - Rg}_{6}$ From combination rules (CR)			C ^{SF} 6 ^{-Rg} CC 6 CR (mean)
	Tao	Vydrov	Kumar		Тао	Vydrov	Kumar	
Ne-Ne	7.33	6.35	6.38	SF ₆ -Ne	65.5	61.0	61.1	63.3(6)
Ar-Ar	67.7	64.42	64.30	SF ₆ -Ar	199.1	194.3	194.1	196.7(20)
Kr-Kr	133	130.1	129.6	SF ₆ -Kr	279.1	276.1	275.5	277.4(27)
Xe-Xe	296	-	285.9	SF ₆ -Xe	416.4	416.4	409.2	412.8(41)
SF_6 - SF_6	-	585.8	-					

Table S3: $C_{6}^{SF_{6}-Rg}$ coefficients (in atomic units) derived from calculated C_{6}^{Rg-Rg} and $C_{6}^{SF_{6}-SF_{6}}$ coefficients and combining rules. CR mean values are obtained by averaging sets

 C_{6}^{6} coefficients and combining rules. CR mean values are obtained by averaging sets from three distinct studies.

	$R_{e(\text{\AA})}$	β(Å-1)	$\Delta v_{exp}(cm^{-1})$	$\Delta v_{exp} R_e^{-6} / C_6$	$3\beta/R_e$	ε(cm ⁻¹)
SF ₆ -Ne	4.05(15) ^(a)	4.411	-0.12(3)	-1.74 10 ⁻³	3.267	104
SF ₆ -Ar	4.302(4) ^(b)	4.065	-0.723(1)	-4.84 10 ⁻³	2.835	227
SF ₆ -Kr	4.394(3) ^(b)	3.949	-0.981(1)	-5.29 10 ⁻³	2.696	283
SF ₆ -Xe	4.592(1) ^(b)	3.816	-1.305(1)	-6.16 10 ⁻³	2.493	322

(a) The SF_6 -Ne bond length was roughly bracketed from both DFT-D calculations and combination rules (see text).

(b) For the complexes with heavier rare gases, experimental R_e distances were used.

Table S4: Parameters used in the model of Buckingham potential for the rare $gas-SF_6$ heterodimers, together with the potential depths derived from application of Formula (4) of the text.

References

- ¹ M. J. Seaton, Rep. Prog. Phys. 46, 167 (1983).
 ² D. R. Lide and H. P. R. Frederikse, 77th ed. CRC, Boca Raton, FL, 1996–1997.
 ³ R. A. Aziz, M. J. Slaman, W. L. Taylor et J. J. Hurly, J. Chem. Phys. 94, 1034 (1991).
 ⁴ J. Tao, J. P. Perdew and A. Ruzsinszky, PNAS, 109, 18 (2012).
 ⁵ O. A. Vydrov and T. van Voorhis, Phys. Rev. A 81, 062708 (2010).
 ⁶ A. Kumar and W. J. Meath, Mol. Phys. 54, 823 (1985).