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Supplementary Information to ‘Interactions between water and
Cgo in the endohedral fullerene H,OQCgy’
1 Relations between coordinate systems

The coordinates of a point in the molecule-fixed coordinate system {x.,, yw, 2 } are related to coordinates
in a space-fixed system {z,y, 2} with the same origin by!
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where A(¢, 0, x) is the product of three Euler rotation matrices
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Coordinates in a space-fixed system with origin at the centre of a Cgp molecule are therefore
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where {Zcm, Yems Zem } = Rem {8In Oem €08 Pem, SIN Ocpy SIN Pery, €08 Oy } s the position of the centre of mass
of the water molecule relative to the centre of the Cgy molecule expressed in spherical polar coordinates
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2 Rotational basis states and angular momentum

The rotational states are written in terms of complex conjugates of Wigner matrices Dfi?k((b, 6, x) involving
the Euler angles {¢,0, x}. We use the definition®
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As Wigner matrices are related to their complex conjugates by Difl)k = (—1)m*kD(_]2;7_k, the rotational
states can also be defined in terms of Wigner matrices directly rather than their complex conjugates.

The components of the rotational angular momentum with respect to the molecule-fixed axes {Z, Yu, 2w }
can be written in terms of derivatives of the Euler angles as'!
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3 Properties of Wigner matrices and spherical harmonics

In order to obtain analytical expressions for the matrix elements of the perturbation V' between rotational
basis states, we use the relation that allows the product of two Wigner matrices to be written in terms of a
sum of single Wigner matrices (Equation (11) in the main text) combined with the orthogonality relations
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where the d,,/ ,,, are Kronecker delta functions. To evaluate matrix elements between translational states,
we use the integral
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where the ( ) are Wigner 3j-symbols.

4 Additional Ags) states in Sém symmetry

Table 3 in the main text shows states up to ! = 2 and J = 2 that were derived for Sém) symmetry but

which actually have spherical or spheroidal symmetry. There are 17 additional Aés) states up to [ = 2
and J = 2 that do have a lower symmetry. Of these, 5 occur when our calculations are repeated for Dgf)
symmetry. The remaining 12 only occur in Séu) symmetry. The results are shown below where, as in the

main text, normalised states v; y, are obtained by dividing the results in this table by 4.
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V5 <D§,23Y27_1 — D(_22)70Y2,1> ON, 2
\/% (Dg%JrYQ),l — D(_22)+2Y'21) PN, 2
V3 (D(,ll),oYLq - D%Ym) PN, 1
\/g (Dg%_YL_l — D(_22)_2Y11> PN, 1

5 (D(_zl);YL_l + Df;fym) ®N, 1
\/5D(()?%_Y1,0¢NT,1
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V5 (D(_22)70Y2,_2 - D%Yz,z) ON, 2

% (D93;Y2,—2 - D§,22)+Y272) PN, 2

5 (Dg%JrYg,,l + D,22)+2Yz1) PN, 2
V5 (Dg?gi’z_l + D(_22)70Y2,1> ®N, 2
\/g (D§?3+Y2’72 + D(_21)+2Y22) PN, 2
V5 (D%YZ_Q + D(_21)70Y2,2> N, 2
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