Unveiling the effects of A-site substitutions on the oxygen ions migration in

$A_{2-x}A'_xNiO_{4+\delta}$ by first principles calculations

Zhihong Du^{1,2,3}, Zijia Zhang^{1,2}, Anna Niemczyk², Anna Olszewska², Konrad Świerczek^{2,4*}, Hailei Zhao^{1,3**}

¹University of Science and Technology Beijing, School of Materials Science and Engineering, Beijing

100083, China

²AGH University of Science and Technology, Faculty of Energy and Fuels, al. A. Mickiewicza 30, 30-059 Krakow, Poland

³Beijing Municiple Key Lab for Advanced Energy Materials and Technologies, Beijing 100083, China

⁴AGH Centre of Energy, AGH University of Science and Technology, ul. Czarnowiejska 36, 30-054 Krakow, Poland

*xi@agh.edu.pl

**hlzhao@ustb.edu.cn

Supporting Information

Figure S1. $2\sqrt{2} \times \sqrt{2} \times 1$ supercell with 16(A,A'), 8Ni, 32O atoms for $A_{2-x}A'_xNiO_{4+\delta}$ ($\delta = 0.125$)

Table S1. Calculated formation energy of the interstitial oxygen in $A_{2-x}A'_xNiO_{4+\delta}$ (A = La, Pr,

Nd, Sm; A' = Ba, Sr, Ca; x = 0 and 0.25; $\delta = 0.125$, 0.25 and 0.5). *For this value, experimental parameters ($a = b = \sqrt{2} \times 3.8642$ Å, c = 12.6869 Å) were used in the calculations.

composition	formation energy at O1 / eV	formation energy at O5 / eV
La ₂ NiO _{4.125}	-4.43	_
$La_2NiO_{4.25}$	-4.07	_
$La_2NiO_{4.5}$	-1.46	_
$\text{La}_2\text{NiO}_{4.125}^*$	-4.94	_
$\mathrm{La_2NiO_{4.25}}^*$	-4.41	_
$La_{1.75}Ba_{0.25}NiO_{4.25}$	-3.49	-3.74
$La_{1.75}Sr_{0.25}NiO_{4.25}$	-3.45	-3.82
$La_{1.75}Ca_{0.25}NiO_{4.25}$	-3.57	-3.93
$Pr_2NiO_{4.25}$	-4.81	_
$Nd_2NiO_{4.25}$	-4.61	_
$_{\text{Sm}_{2}}$ NiO _{4.25}	-4.24	<u> </u>