Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2018

A unique metallic phase of the H₃S at high-pressure: Sulfur in three different local

environments

Ashok K. Verma^{*} and P. Modak High Pressure and Synchrotron Radiation Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai-400085, India

*Corresponding author: hpps@barc.gov.in

SUPLEMENTARY INFORMATION

Figure 1S: Enthalpies of important structures below 100 GPa for H₃S.

Figure 2S: Pressure variation of experimental superconducting temperature¹ and density of states at Fermi-level for R3m, R3m and Im3m phases (symbols with connecting lines). Open circles and diamonds show the experimental data taken during pressure increase. Filled circles and diamonds show the experimental data taken during pressure increase and decrease, respectively. Here, DOS is given in units of states/eV/H₃S.

Figure 3S: (colour online) The COHP functions along with total DOS functions of H_3S and MgB_2 . Here H_3S data is generated at 125 GPa and MgB_2 data is generated using ambient lattice parameters.

Figure 4S: Phonon properties of $R^{3}m$ phase of H₃S at 125 GPa. Here (a) shows the phonon dispersion curve and (b) shows projected phonon density of state functions.

	Р	Lattice	Atomic coordinates
		parameters	
RЗт	125	a = 4.3872 b = 4.3872 c = 22.1929	H1 (18 <i>h</i>):0.48383 0.51617 0.06717 H2 (18 <i>h</i>):0.84243 0.15757 0.22697 H3 (18 <i>h</i>):0.17803 0.82197 0.01807 H4 (18 <i>h</i>):0.48373 0.51627 0.19287 S1 (6 <i>c</i>):0.00000 0.00000 0.06330 S2 (6 <i>c</i>):0. 00000 0.00000 0.56250
			S3 (6c): 0.00000 0.00000 0.68520 S4 (6c): 0.00000 0.00000 0.18960
C2/m	50	a = 8.3767 b = 4.7401 c = 8.6491 $\beta = 110.7890^{\circ}$	S4 (62):0.00000 0.0000 0.18960 HI (4i): -0.03653 0.00000 0.78249 H2 (4i): 0.45848 0.00000 0.28826 H3 (4i): 0.28088 0.00000 -0.03213 H4 (4i): 0.82559 0.00000 0.40894 H5 (8j): -0.06828 0.23621 0.06089 H6 (8j): 0.46424 0.29001 0.58749 H7 (8j): 0.32525 0.29089 0.20957 H8 (8j): 0.79343 0.20718 0.66287 S1 (4i): 0.44605 0.00000 0.31279 S3 (4i): 0.83037 0.00000 -0.04902 S4 (4i): 0 31448 0.00000 0.42830
P4c2	50	a = 5.8703 b = 5.8703 c = 4.9157	H1 (4 <i>e</i>): 0.45517 0.45517 0.25000 H2 (8 <i>j</i>): 0.01639 0.33494 0.26682 H3 (8 <i>j</i>): 0.44999 0.77115 -0.00709 H4 (4 <i>g</i>): 0.00000 0.00000 0.67283 S (8 <i>j</i>): 0.68046 0.83552 -0.00751

Table IS: Crystallographic data of newly proposed H ₃ S structures as obtained in GGA
calculations. Here pressure (P) is given in GPa unit and lattice parameters in angstrom unit.

References

 M. Einaga, M. Sakata, T. Ishikawa, K. Shimizu, M. I. Eremets, A. P. Drozdov, I. A. Troyan, N. Hirao, and Y. Ohish, *Nat. Phys.*, 2016, **12 (9)**, 835.