Supplementary Information

Van der Waals interaction-induced photoluminescence weakening and multilayer growth in epitaxially aligned WS_2

Hyun Goo Ji,^a Mina Maruyama,^b Adha Sukma Aji,^a Susumu Okada,^b Kazunari Matsuda,^c and Hiroki Ago^{a,d,*}

 ^a Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, Fukuoka 816-8580, Japan
^b Graduate School of Pure and Applied Sciences, University of Tsukuba, Ibaraki 305-8571, Japan
^c Institute of Advanced Energy, Kyoto University, Uji, Kyoto, 611-0011, Japan
^d Global Innovation Center (GIC), Kyushu University, Fukuoka 816-8580, Japan

Figure S1. CVD condition used for WS_2 growth on sapphire.

Figure S2. Optical micrographs of as-grown WS_2 grains on sapphire substrates. (a) The preferential overlayer deposition was observed on the aligned grains. (b) In a few cases, the sapphire surface was fully covered with WS_2 together with large multilayer grains.

	Growth parameters				Growth mode	
	Gas flow rate	WO ₃	S	sapphire	Epitaxially aligned grains	Preferential multilayer growth
А	300 ccm	1080 °C	160 °C	970 °C	Х	Х
В	500 ccm				0	0
С	700 ccm				0	0
D		1075 °C	160 °C	770 °C	Х	Х
Е	500 ccm			870 °C	Х	Х
F				970 °C	0	Х
G				1070 °C	0	0

Table S1. CVD conditions used for sample (A) \sim (G) shown in Figure S3 and the observed growth modes.

Figure S3. Optical images of as-grown WS_2 on c-plane sapphire synthesized using the growth conditions shown in Table S1.

Figure S4. PL mapping images of the peak intensity (a), FWHM (b), and position (c) of monolayer WS₂ grains. (d) AFM height image. The inset shows a magnified image of the marked area. Raman E_{2g}^{1} mappings with intensity (e) and FWHM (f), and A_{1g} mappings with intensity (g) and FWHM (h). (i) PL, (j) E_{2g}^{1} , and (k) A_{1g} spectra taken from as-grown aligned and misaligned grains.

Figure S5. PL mapping images of identical WS₂ grains before (a) and after (b) transfer on SiO₂/Si substrate. The difference in PL intensity observed between aligned- and misaligned-grains in asgrown WS₂ disappeared after the transfer process. The wavy patterns observed in the PL intensity of the transferred WS₂ (b) are from wrinkles induced during transfer process.

Figure S6. OM image and PL spectra of MoS_2 grown on c-plane sapphire. In the OM image (a), oriented grains are aligned along [1100] axis of sapphire substrate. PL spectra are shown in (b) where red and green spectra correspond to PL from aligned- and misaligned-grains, respectively. Asterisk (*) indicates a peak from a sapphire substrate. The peak at ~1.76 eV corresponds to bound exciton in MoS_2 .

Figure S7. (a) OM images of CVD-grown WS₂ on different planes of sapphire substrates. (b) Surface crystal structure of each sapphire plane. (c) Grain orientation histogram of WS₂ grown on each sapphire plane. $[11\overline{2}0]$, $[1\overline{1}00]$, and $[000\overline{1}]$ axes are set as 0° for r-, c-, and a-plane sapphire, respectively. (d) PL spectra from the as-grown WS₂ grains.